Hierarchical hesitant fuzzy K-means clustering algorithm

Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematics-A Journal of Chinese Universities 2014-03, Vol.29 (1), p.1-17
Hauptverfasser: Chen, Na, Xu, Ze-shui, Xia, Mei-mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the clustering technique for hesitant fuzzy sets based on the K-means clustering algorithm which takes the results of hierarchical clustering as the initial clusters. Finally, two examples demonstrate the validity of our algorithm.
ISSN:1005-1031
1993-0445
DOI:10.1007/s11766-014-3091-8