Q变形非简谐振子湮没算符高次幂的本征态及其高阶压缩特性
构造出了Q变形的非简谐振子湮没算符K次幂(K≥3)的K个正交归一本征态,给出了它们的完备性证明,并且研究了它们的高次方压缩特性。结果表明,它们能够组成一个完备的Hilbert空间;且当K为偶数时,这些本征态均可呈现M次方「M=(n+1/2)K,n=0,1,2,……」压缩效应。...
Gespeichert in:
Veröffentlicht in: | 高能物理与核物理 2000, Vol.24 (12), p.1115-1122 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1122 |
---|---|
container_issue | 12 |
container_start_page | 1115 |
container_title | 高能物理与核物理 |
container_volume | 24 |
creator | 王继锁 刘堂昆 |
description | 构造出了Q变形的非简谐振子湮没算符K次幂(K≥3)的K个正交归一本征态,给出了它们的完备性证明,并且研究了它们的高次方压缩特性。结果表明,它们能够组成一个完备的Hilbert空间;且当K为偶数时,这些本征态均可呈现M次方「M=(n+1/2)K,n=0,1,2,……」压缩效应。 |
doi_str_mv | 10.3321/j.issn:0254-3052.2000.12.007 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_gnwlyhwl200012007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>4786954</cqvip_id><wanfj_id>gnwlyhwl200012007</wanfj_id><sourcerecordid>gnwlyhwl200012007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607-560d2776fc4af15e73e09d44930026c558210fc4d6d7dc3fb8e40da8a929f4d53</originalsourceid><addsrcrecordid>eNpNkEtLw1AQhS-iYKn9EYIbF4mT-0zcSfEFhSJ0X27zaFNDRIMUd63owge2O4uoUBeKWKu4KBTUf3MT-y-MVMTNmeGcjxk4CC0YoBOCjaW67kdRuAyYUY0AwzoGAN3AOoCYQpk_f_rfPotyUeRXAFPBsYlZBhW3VLurPu7GN7fJoPn12onPX9RzJx4N4rdeMrhM-vfjp27c76nRYXJ1FF_31WcrbrZU-1QdD9No3B2qi7Pk_TE5GcXNhzk048kgcnO_M4tKa6ul_IZWKK5v5lcKms1BaIyDg4Xgnk2lZzBXEBcsh1KLAGBuM2ZiA9LQ4Y5wbOJVTJeCI01pYcujDiNZtDg525ChJ8Nqub6zvxemD8vVsBEc1BrBTxtGKiJl5yesXdsJq7t-Slekve35gVumwuQWo-QbZYt8Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Q变形非简谐振子湮没算符高次幂的本征态及其高阶压缩特性</title><source>Alma/SFX Local Collection</source><creator>王继锁 刘堂昆</creator><creatorcontrib>王继锁 刘堂昆</creatorcontrib><description>构造出了Q变形的非简谐振子湮没算符K次幂(K≥3)的K个正交归一本征态,给出了它们的完备性证明,并且研究了它们的高次方压缩特性。结果表明,它们能够组成一个完备的Hilbert空间;且当K为偶数时,这些本征态均可呈现M次方「M=(n+1/2)K,n=0,1,2,……」压缩效应。</description><identifier>ISSN: 0254-3052</identifier><identifier>EISSN: 0254-3052</identifier><identifier>DOI: 10.3321/j.issn:0254-3052.2000.12.007</identifier><language>chi</language><publisher>252059%中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉,430071</publisher><subject>Q变形 ; 本征态 ; 湮没算符 ; 量子光学 ; 非简谐振子</subject><ispartof>高能物理与核物理, 2000, Vol.24 (12), p.1115-1122</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/92043X/92043X.jpg</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>王继锁 刘堂昆</creatorcontrib><title>Q变形非简谐振子湮没算符高次幂的本征态及其高阶压缩特性</title><title>高能物理与核物理</title><addtitle>High Energy Physics and Nuclear Physics</addtitle><description>构造出了Q变形的非简谐振子湮没算符K次幂(K≥3)的K个正交归一本征态,给出了它们的完备性证明,并且研究了它们的高次方压缩特性。结果表明,它们能够组成一个完备的Hilbert空间;且当K为偶数时,这些本征态均可呈现M次方「M=(n+1/2)K,n=0,1,2,……」压缩效应。</description><subject>Q变形</subject><subject>本征态</subject><subject>湮没算符</subject><subject>量子光学</subject><subject>非简谐振子</subject><issn>0254-3052</issn><issn>0254-3052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw1AQhS-iYKn9EYIbF4mT-0zcSfEFhSJ0X27zaFNDRIMUd63owge2O4uoUBeKWKu4KBTUf3MT-y-MVMTNmeGcjxk4CC0YoBOCjaW67kdRuAyYUY0AwzoGAN3AOoCYQpk_f_rfPotyUeRXAFPBsYlZBhW3VLurPu7GN7fJoPn12onPX9RzJx4N4rdeMrhM-vfjp27c76nRYXJ1FF_31WcrbrZU-1QdD9No3B2qi7Pk_TE5GcXNhzk048kgcnO_M4tKa6ul_IZWKK5v5lcKms1BaIyDg4Xgnk2lZzBXEBcsh1KLAGBuM2ZiA9LQ4Y5wbOJVTJeCI01pYcujDiNZtDg525ChJ8Nqub6zvxemD8vVsBEc1BrBTxtGKiJl5yesXdsJq7t-Slekve35gVumwuQWo-QbZYt8Ng</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>王继锁 刘堂昆</creator><general>252059%中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉,430071</general><general>聊城师范学院物理系</general><general>合肥</general><general>中国科学院安徽光学精密机械研究所激光光谱学开放研究实验室</general><general>230031</general><general>中国科学院安徽光学精密机械研究所激光光谱学开放研究实验室,合肥,230031</general><general>聊城</general><general>中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉,430071</general><general>湖北师范学院物理系,黄石,435002%中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉,430071</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2000</creationdate><title>Q变形非简谐振子湮没算符高次幂的本征态及其高阶压缩特性</title><author>王继锁 刘堂昆</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607-560d2776fc4af15e73e09d44930026c558210fc4d6d7dc3fb8e40da8a929f4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2000</creationdate><topic>Q变形</topic><topic>本征态</topic><topic>湮没算符</topic><topic>量子光学</topic><topic>非简谐振子</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王继锁 刘堂昆</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>高能物理与核物理</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王继锁 刘堂昆</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Q变形非简谐振子湮没算符高次幂的本征态及其高阶压缩特性</atitle><jtitle>高能物理与核物理</jtitle><addtitle>High Energy Physics and Nuclear Physics</addtitle><date>2000</date><risdate>2000</risdate><volume>24</volume><issue>12</issue><spage>1115</spage><epage>1122</epage><pages>1115-1122</pages><issn>0254-3052</issn><eissn>0254-3052</eissn><abstract>构造出了Q变形的非简谐振子湮没算符K次幂(K≥3)的K个正交归一本征态,给出了它们的完备性证明,并且研究了它们的高次方压缩特性。结果表明,它们能够组成一个完备的Hilbert空间;且当K为偶数时,这些本征态均可呈现M次方「M=(n+1/2)K,n=0,1,2,……」压缩效应。</abstract><pub>252059%中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉,430071</pub><doi>10.3321/j.issn:0254-3052.2000.12.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-3052 |
ispartof | 高能物理与核物理, 2000, Vol.24 (12), p.1115-1122 |
issn | 0254-3052 0254-3052 |
language | chi |
recordid | cdi_wanfang_journals_gnwlyhwl200012007 |
source | Alma/SFX Local Collection |
subjects | Q变形 本征态 湮没算符 量子光学 非简谐振子 |
title | Q变形非简谐振子湮没算符高次幂的本征态及其高阶压缩特性 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Q%E5%8F%98%E5%BD%A2%E9%9D%9E%E7%AE%80%E8%B0%90%E6%8C%AF%E5%AD%90%E6%B9%AE%E6%B2%A1%E7%AE%97%E7%AC%A6%E9%AB%98%E6%AC%A1%E5%B9%82%E7%9A%84%E6%9C%AC%E5%BE%81%E6%80%81%E5%8F%8A%E5%85%B6%E9%AB%98%E9%98%B6%E5%8E%8B%E7%BC%A9%E7%89%B9%E6%80%A7&rft.jtitle=%E9%AB%98%E8%83%BD%E7%89%A9%E7%90%86%E4%B8%8E%E6%A0%B8%E7%89%A9%E7%90%86&rft.au=%E7%8E%8B%E7%BB%A7%E9%94%81%20%E5%88%98%E5%A0%82%E6%98%86&rft.date=2000&rft.volume=24&rft.issue=12&rft.spage=1115&rft.epage=1122&rft.pages=1115-1122&rft.issn=0254-3052&rft.eissn=0254-3052&rft_id=info:doi/10.3321/j.issn:0254-3052.2000.12.007&rft_dat=%3Cwanfang_jour_chong%3Egnwlyhwl200012007%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=4786954&rft_wanfj_id=gnwlyhwl200012007&rfr_iscdi=true |