Preliminary Studies on X-Ray-sensitive Liposome
The synthesis of a new type of X-ray-sensitive compound "di-(1-hydroxylundecyl) diselenide" and its application in the preparation of a new type of liposome with X-ray sensitivity was reported.This new liposome was synthesized to encapsulate doxorubicin hydrochloride(Dox),with its physical and chemi...
Gespeichert in:
Veröffentlicht in: | 高等学校化学研究(英文版) 2012-03, Vol.28 (2), p.319-322 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The synthesis of a new type of X-ray-sensitive compound "di-(1-hydroxylundecyl) diselenide" and its application in the preparation of a new type of liposome with X-ray sensitivity was reported.This new liposome was synthesized to encapsulate doxorubicin hydrochloride(Dox),with its physical and chemical properties,stability,and radiation sensitivity determined.Based on the pH-gradient method,liposomal Dox was prepared via ultrasonic emulsification and then purified on a Sephadex G50 mini-column.UV spectrophotometry and liquid chromatography were used to detect the encapsulation efficiency and radiation sensitivity of the Dox-loaded liposome.The results show that through changes in release rate,this liposome shows a relative radiosensitivity.In terms of radiation sensitivity,the drug leak rate of the X-ray-sensitive Dox-loaded liposome increased gradually and peaked at 65.4% under the X-ray radiation of a dose of 10 Gy or more than 10 Gy,which is significantly different from that of ordinary liposomes.Meanwhile,X-ray-sensitive Dox-loaded liposome has a good dispersion stability,with an average particle size of approximate 120 nm.The efficiency of this liposome encapsulating Dox was 75.84%,slightly lower than that of ordinary liposomes.The X-ray-sensitive Dox-loaded liposome exhibited suspension stability within 30 d of storage at 4 °C,without visible precipitation.Di-(1-hydroxylundecyl) diselenide is safe and noncytotoxic and compared with those of synthetic phospholipids its synthesis is low cost and does not require complex conditions. |
---|---|
ISSN: | 1005-9040 2210-3171 |