Inhibition of Ampicillin-resistance in Bacteria by Modified DNAzymes

To overcome ampicillin-resistance of bacteria which is believed to attribute their endogenous B-lactamase, we designed three 10-23 DNAzymes(Dz1, Dz2. Dz3) targeting the coding region of B-lactamase mRNA and examined their inhibitory capabilities of the ampicillin-resistance of TEM-1 and TEM-3 bacter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in Chinese universities 2008-07, Vol.24 (4), p.491-495
Hauptverfasser: CHEN, Fei, LI, Zhe, YANG, Shuo, WANG, Rui-jian, LIU, Bin, SONG, Yu-ming, SUN, Yan-hong, HAO, Dong-yun, WANG, Xiao-ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To overcome ampicillin-resistance of bacteria which is believed to attribute their endogenous B-lactamase, we designed three 10-23 DNAzymes(Dz1, Dz2. Dz3) targeting the coding region of B-lactamase mRNA and examined their inhibitory capabilities of the ampicillin-resistance of TEM-1 and TEM-3 bacteria. Dz1 was a traditional 10-23 DNAzyme, Dz2 was the mutant of Dz1 by addition of the protected nucleotide to each ann of the enzyme, and Dz3 was a mutant of Dz1 at antisense arms of which phosphorothioate modifications were made. Kinetic analysis, bacterial growth, and β-lactamase activity measurement showed that all the three DNAzymes worked efficiently in vitro and in vivo. A 9 hours bacterial growth inhibition test showed that the inhibition rates of TEM-1 bacteria by Dz1, Dz2, and Dz3 were 27%, 50%, and 29%, respectively. In addition, the inhibition rates of TEM-3 bacteria by those three DNAzymes were found io be 49%, 58%, and 45%, respectively. The current findings suggest that DNAzymes may become potential candidates of alternative inhibitors for bacteria drug-resistance.
ISSN:1005-9040
2210-3171
DOI:10.1016/S1005-9040(08)60103-8