基于混合蚁群算法的核应急车辆疏散路径规划

TL72%TL77; 核事故的发生具有不可预测性和破坏性,为应急车辆制定合理的疏散计划将危险区域的人员撤离至安置点,可以有效减少人员所受到的伤害.针对核事故下应急车辆路径规划问题,以累积辐射剂量为评价指标,提出了一种基于混合蚁群算法(Hybrid ant colony algorithm,HACO)的车辆路径规划方法.首先,利用模糊网络建立了时间窗内疏散路径平均通行时间期望模型,同时结合累积辐射剂量计算模型,建立了能够随时间变化的动态累积辐射剂量计算模型.然后在蚁群算法迭代过程中引入模拟退火算法,并且在邻域搜索中引入A*算法启发式思想,提高了算法全局寻优能力.为进一步提高算法的局部搜索能力,引...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:辐射研究与辐射工艺学报 2023-12, Vol.41 (6), p.65-78
Hauptverfasser: 周怀芳, 张华, 霍建文, 李林静, 陈波, 林海涛
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TL72%TL77; 核事故的发生具有不可预测性和破坏性,为应急车辆制定合理的疏散计划将危险区域的人员撤离至安置点,可以有效减少人员所受到的伤害.针对核事故下应急车辆路径规划问题,以累积辐射剂量为评价指标,提出了一种基于混合蚁群算法(Hybrid ant colony algorithm,HACO)的车辆路径规划方法.首先,利用模糊网络建立了时间窗内疏散路径平均通行时间期望模型,同时结合累积辐射剂量计算模型,建立了能够随时间变化的动态累积辐射剂量计算模型.然后在蚁群算法迭代过程中引入模拟退火算法,并且在邻域搜索中引入A*算法启发式思想,提高了算法全局寻优能力.为进一步提高算法的局部搜索能力,引入帕累托排序方式,在蚁群算法信息素更新方式中加入距离对信息素增量的影响.仿真结果表明:HACO算法相较于蚁群算法平均收敛值提高了31%,稳定性提高了30%,能够为核事故下疏散路径规划预案的制定提供技术支持.
ISSN:1000-3436
DOI:10.11889/j.1000-3436.2023-0030