WAVELET ANALYSIS OF MODULATED SIGNALS
The relationship between Haar wavelet decomposition coefficients and modulated signal parameters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and phase information derived from Haar wavelet decomposition as feature vectors to disting...
Gespeichert in:
Veröffentlicht in: | Journal of electronics (China) 2006-07, Vol.23 (4), p.490-494 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The relationship between Haar wavelet decomposition coefficients and modulated signal parameters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and phase information derived from Haar wavelet decomposition as feature vectors to distinguish the modulation types of M-ary Frequency-Shift Keying (MFSK), M-ary Phase-Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) modulation types. A parallel combined classifier is designed based on these feature vectors. The overall successful recognition rate of 92.4% can be achieved even at a low Sig- nal-to-Noise Ratio (SNR) of 5dB. |
---|---|
ISSN: | 0217-9822 1993-0615 |
DOI: | 10.1007/s11767-004-0207-y |