WAVELET ANALYSIS OF MODULATED SIGNALS

The relationship between Haar wavelet decomposition coefficients and modulated signal parameters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and phase information derived from Haar wavelet decomposition as feature vectors to disting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronics (China) 2006-07, Vol.23 (4), p.490-494
Hauptverfasser: Hu, Jianwei, Yang, Shaoquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relationship between Haar wavelet decomposition coefficients and modulated signal parameters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and phase information derived from Haar wavelet decomposition as feature vectors to distinguish the modulation types of M-ary Frequency-Shift Keying (MFSK), M-ary Phase-Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) modulation types. A parallel combined classifier is designed based on these feature vectors. The overall successful recognition rate of 92.4% can be achieved even at a low Sig- nal-to-Noise Ratio (SNR) of 5dB.
ISSN:0217-9822
1993-0615
DOI:10.1007/s11767-004-0207-y