基于加权K-近邻分类的非视距识别方法研究

TN919.72%TP391; 超宽带(UWB)定位系统中,针对复杂的环境下,信号的遮挡、直达信号的错误判断严重影响定位精度问题,该文基于信道冲激响应(CIR)提出一种新型特征参量——饱和度(S),结合前人提出的特征参量利用Relief算法和互信息特征选择(MIFS)算法进行特征选择,在相关性的基础上赋予特征相应的权重,选择最优的特征子集进行加权K-近邻(WKNN)分类,提高了非视距(NLOS)识别系统准确度.并且分析了WKNN算法中的训练数据集数量与近邻数K对算法的影响,确定优选方案,减小了算法计算量,提高了NLOS识别系统实时性.在不同环境下进行实验验证,结果表明,该方法具备较高的识别准确...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子与信息学报 2022, Vol.44 (8), p.2842-2851
Hauptverfasser: 韦子辉, 解云龙, 王世昭, 叶兴跃, 张要发, 方立德
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TN919.72%TP391; 超宽带(UWB)定位系统中,针对复杂的环境下,信号的遮挡、直达信号的错误判断严重影响定位精度问题,该文基于信道冲激响应(CIR)提出一种新型特征参量——饱和度(S),结合前人提出的特征参量利用Relief算法和互信息特征选择(MIFS)算法进行特征选择,在相关性的基础上赋予特征相应的权重,选择最优的特征子集进行加权K-近邻(WKNN)分类,提高了非视距(NLOS)识别系统准确度.并且分析了WKNN算法中的训练数据集数量与近邻数K对算法的影响,确定优选方案,减小了算法计算量,提高了NLOS识别系统实时性.在不同环境下进行实验验证,结果表明,该方法具备较高的识别准确度和环境适用性,识别精度达到95%.
ISSN:1009-5896
DOI:10.11999/JEIT210422