基于互信息自编码和变分路由的胶囊网络结构优化

TP181%TN911.73; 胶囊网络是一类有别于卷积神经网络的新型网络模型.该文尝试提高其泛化性和精准性:首先,利用变分路由来缓解经典路由对先验信息依赖性强、易导致模型过拟合的问题.通过使用高斯混合模型(GMM)来拟合低级矩阵胶囊,并利用变分法求取近似分布,避免了参数最大似然点估计的误差,用置信度评估来获得泛化性能的提高;其次,考虑到实际数据大多无标签或者标注困难,构建互信息评价标准的胶囊自编码器,实现特征参数的有效筛选.即通过引入局部编码器,只保留胶囊中对原始输入识别最有效的特征,在减轻网络负担的同时提高了其分类识别的精准性.该文的方法在MNIST,FashionMNIST,CIFAR-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子与信息学报 2021, Vol.43 (11), p.3309-3318
Hauptverfasser: 鲍静益, 徐宁, 尚蕴浩, 楚昕
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP181%TN911.73; 胶囊网络是一类有别于卷积神经网络的新型网络模型.该文尝试提高其泛化性和精准性:首先,利用变分路由来缓解经典路由对先验信息依赖性强、易导致模型过拟合的问题.通过使用高斯混合模型(GMM)来拟合低级矩阵胶囊,并利用变分法求取近似分布,避免了参数最大似然点估计的误差,用置信度评估来获得泛化性能的提高;其次,考虑到实际数据大多无标签或者标注困难,构建互信息评价标准的胶囊自编码器,实现特征参数的有效筛选.即通过引入局部编码器,只保留胶囊中对原始输入识别最有效的特征,在减轻网络负担的同时提高了其分类识别的精准性.该文的方法在MNIST,FashionMNIST,CIFAR-10和CIFAR-100等数据集上进行了对比测试,实验结果表明:该文方法对比经典胶囊网络,其性能得到显著改善.
ISSN:1009-5896
DOI:10.11999/JEIT201094