基于子空间投影的复杂水下环境运动小目标检测前跟踪方法
TN911.73; 针对复杂水下环境运动小目标检测中存在的目标信号强度弱、信杂比低等问题,该文提出基于子空间投影的检测前跟踪(TBD)算法:对原始图像数据截取序列片段,将3维时空片段中的短时运动航迹投影到2维子空间平面;利用2维投影图中平面航迹的形态特征进行初步筛选,提取目标的有效运动区域;将2维平面中的目标短时航迹在局部区域重建3维时序,在3维航迹回溯过程中利用目标运动特征再次筛选目标短时航迹.通过上述分级检测机制,可实现快速高精度的目标短时航迹检测.结合前景检测以及基于层次凝聚聚类(HAC)的长时航迹检测算法,构建了针对运动小目标的完整检测前跟踪方法.最后使用实测声呐图像数据验证了算法的检...
Gespeichert in:
Veröffentlicht in: | 电子与信息学报 2021-03, Vol.43 (3), p.826-833 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TN911.73; 针对复杂水下环境运动小目标检测中存在的目标信号强度弱、信杂比低等问题,该文提出基于子空间投影的检测前跟踪(TBD)算法:对原始图像数据截取序列片段,将3维时空片段中的短时运动航迹投影到2维子空间平面;利用2维投影图中平面航迹的形态特征进行初步筛选,提取目标的有效运动区域;将2维平面中的目标短时航迹在局部区域重建3维时序,在3维航迹回溯过程中利用目标运动特征再次筛选目标短时航迹.通过上述分级检测机制,可实现快速高精度的目标短时航迹检测.结合前景检测以及基于层次凝聚聚类(HAC)的长时航迹检测算法,构建了针对运动小目标的完整检测前跟踪方法.最后使用实测声呐图像数据验证了算法的检测精度和检测速度. |
---|---|
ISSN: | 1009-5896 |
DOI: | 10.11999/JEIT200446 |