基于Sigmoid框架的非负最小均方算法

TN911.7; 脉冲噪声会导致非负算法在迭代过程中存在过大的误差值,进而破坏算法的稳定性使其性能严重下降,对此该文提出一种基于Sigmoid框架的非负最小均方算法(SNNLMS).该算法将传统的非负代价函数嵌入Sigmoid框架中得到新的代价函数,新的代价函数具有抑制脉冲噪声影响的特性.此外,为了增强SNNLMS算法在稀疏系统识别问题上的鲁棒性,该文还提出基于反比例函数的反比例Sigmoid非负最小均方算法(IP-SNNLMS).仿真结果表明SNNLMS算法有效地解决了脉冲噪声造成的失调问题;IP-SNNLMS增强了算法鲁棒性,改进了算法在稀疏系统识别问题中收敛速率上的缺陷....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子与信息学报 2021-02, Vol.43 (2), p.349-355
Hauptverfasser: 樊宽刚, 邱海云
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TN911.7; 脉冲噪声会导致非负算法在迭代过程中存在过大的误差值,进而破坏算法的稳定性使其性能严重下降,对此该文提出一种基于Sigmoid框架的非负最小均方算法(SNNLMS).该算法将传统的非负代价函数嵌入Sigmoid框架中得到新的代价函数,新的代价函数具有抑制脉冲噪声影响的特性.此外,为了增强SNNLMS算法在稀疏系统识别问题上的鲁棒性,该文还提出基于反比例函数的反比例Sigmoid非负最小均方算法(IP-SNNLMS).仿真结果表明SNNLMS算法有效地解决了脉冲噪声造成的失调问题;IP-SNNLMS增强了算法鲁棒性,改进了算法在稀疏系统识别问题中收敛速率上的缺陷.
ISSN:1009-5896
DOI:10.11999/JEIT200018