基于多尺度生成对抗网络的运动散焦红外图像复原

TN911.73; 红外热成像系统在夜间实施目标识别与检测优势明显,而移动平台上动态环境所导致的运动散焦模糊影响上述成像系统的应用.该文针对上述问题,基于生成对抗网络开展运动散焦后红外图像复原方法研究,采用生成对抗网络抑制红外图像的运动散焦模糊,提出一种针对红外图像的多尺度生成对抗网络(IMdeblurGAN)在高效抑制红外图像运动散焦模糊的同时保持红外图像细节对比度,提升移动平台上夜间目标的检测与识别能力.实验结果表明:该方法相对已有最优模糊图像复原方法,图像峰值信噪比(PSNR)提升5%,图像结构相似性(SSIMx)提升4%,目标识别YOLO置信度评分提升6%....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子与信息学报 2020-07, Vol.42 (7), p.1766-1773
Hauptverfasser: 易诗, 吴志娟, 朱竞铭, 李欣荣, 袁学松
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TN911.73; 红外热成像系统在夜间实施目标识别与检测优势明显,而移动平台上动态环境所导致的运动散焦模糊影响上述成像系统的应用.该文针对上述问题,基于生成对抗网络开展运动散焦后红外图像复原方法研究,采用生成对抗网络抑制红外图像的运动散焦模糊,提出一种针对红外图像的多尺度生成对抗网络(IMdeblurGAN)在高效抑制红外图像运动散焦模糊的同时保持红外图像细节对比度,提升移动平台上夜间目标的检测与识别能力.实验结果表明:该方法相对已有最优模糊图像复原方法,图像峰值信噪比(PSNR)提升5%,图像结构相似性(SSIMx)提升4%,目标识别YOLO置信度评分提升6%.
ISSN:1009-5896
DOI:10.11999/JEIT190495