背景抑制直方图模型的连续自适应均值漂移跟踪算法

TN911.73; 针对传统连续自适应均值漂移(CAMshift)跟踪算法在建立目标颜色模型阶段容易包含大量背景颜色信息从而使跟踪效果变差的问题,该文提出一种改进算法.利用混合高斯模型背景法(GMM)将原始图像分割成前景和背景的叠加,在原始图像和背景图像上运动物体所在区域分别建立色调分量直方图,利用背景图像的色调分量直方图计算原始图像中对应色调分量的权值,抑制原始图像中与背景颜色相同的色调,扩大前景与背景颜色的差异性.该方法通过对原始颜色模型中属于背景的色调进行抑制,扩大了目标颜色模型的显著性,提高了跟踪的准确性和稳定性,目标定位的最大中心误差小于20%,能够准确跟踪不发生丢失....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子与信息学报 2019-06, Vol.41 (6), p.1480-1487
Hauptverfasser: 王旭东, 王屹炜, 闫贺
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TN911.73; 针对传统连续自适应均值漂移(CAMshift)跟踪算法在建立目标颜色模型阶段容易包含大量背景颜色信息从而使跟踪效果变差的问题,该文提出一种改进算法.利用混合高斯模型背景法(GMM)将原始图像分割成前景和背景的叠加,在原始图像和背景图像上运动物体所在区域分别建立色调分量直方图,利用背景图像的色调分量直方图计算原始图像中对应色调分量的权值,抑制原始图像中与背景颜色相同的色调,扩大前景与背景颜色的差异性.该方法通过对原始颜色模型中属于背景的色调进行抑制,扩大了目标颜色模型的显著性,提高了跟踪的准确性和稳定性,目标定位的最大中心误差小于20%,能够准确跟踪不发生丢失.
ISSN:1009-5896
DOI:10.11999/JEIT180588