基于混合权重合并策略的社交网络用户关注点识别方法

主题模型是用于识别博客、网络社区、微博等社交网络平台上用户关注点的重要手段。考虑到社交网络平台上短文本主题识别的特殊性,该文根据短文本内容在上下文上的相关性,提出一种基于混合权重合并策略的AW-LDA模型。该模型将符合上下文相关条件的短文本进行虚拟合并,并根据上下文相关程度对不同短文本赋予不同的权重,构建了一种新的短文本主题识别方法。通过网络BBS社区与微博社区两组数据的实验,该模型能够有效识别不同话题下社交网络用户关注点,为解决短文本主题识别问题提供了新的解决思路。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子与信息学报 2017, Vol.39 (9), p.2056-2062
1. Verfasser: 姬建睿 刘业政 姜元春
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:主题模型是用于识别博客、网络社区、微博等社交网络平台上用户关注点的重要手段。考虑到社交网络平台上短文本主题识别的特殊性,该文根据短文本内容在上下文上的相关性,提出一种基于混合权重合并策略的AW-LDA模型。该模型将符合上下文相关条件的短文本进行虚拟合并,并根据上下文相关程度对不同短文本赋予不同的权重,构建了一种新的短文本主题识别方法。通过网络BBS社区与微博社区两组数据的实验,该模型能够有效识别不同话题下社交网络用户关注点,为解决短文本主题识别问题提供了新的解决思路。
ISSN:1009-5896
DOI:10.11999/JEIT161348