基于颜色属性直方图的尺度目标跟踪算法研究

利用目标颜色信息的跟踪算法,容易受到环境光照、尺度变化、相似背景等因素的干扰,导致跟踪任务失败。为了克服以上问题,该文提出一种基于颜色属性空间的鲁棒尺度目标跟踪算法。该算法首先将原始的RGB颜色空间映射到颜色属性(Color Names,CN)空间,减少目标颜色在跟踪过程中受环境变化影响。然后采用一种背景加权约束的颜色属性直方图,来抑制相似背景的干扰。最后,为了解决目标尺度变化带来的影响,先用梯度上升法粗略估计尺度,再用约束项精确求解尺度,并利用反向一致性检验,进一步提高尺度估计的准确性。该文选取了5段典型视频进行实验,并与相关算法进行比较。结果表明所提算法能够消除环境光照、阴影、相似背景和尺...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子与信息学报 2016, Vol.38 (5), p.1099-1106
1. Verfasser: 毕笃彦 库涛 查宇飞 张立朝 杨源
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:利用目标颜色信息的跟踪算法,容易受到环境光照、尺度变化、相似背景等因素的干扰,导致跟踪任务失败。为了克服以上问题,该文提出一种基于颜色属性空间的鲁棒尺度目标跟踪算法。该算法首先将原始的RGB颜色空间映射到颜色属性(Color Names,CN)空间,减少目标颜色在跟踪过程中受环境变化影响。然后采用一种背景加权约束的颜色属性直方图,来抑制相似背景的干扰。最后,为了解决目标尺度变化带来的影响,先用梯度上升法粗略估计尺度,再用约束项精确求解尺度,并利用反向一致性检验,进一步提高尺度估计的准确性。该文选取了5段典型视频进行实验,并与相关算法进行比较。结果表明所提算法能够消除环境光照、阴影、相似背景和尺度变化等因素所带来的影响,在中心位置误差和跟踪成功率性能指标上,优于其它算法。
ISSN:1009-5896
DOI:10.11999/JEIT150921