基于图稀疏正则化多测量向量模型的高光谱压缩感知重建

TP751.1; 压缩感知重建是解决高光谱现有成像模式数据量大冗余度高问题的一个有效机制。针对高光谱图像的多通道特性,该文建立了高光谱压缩感知的多测量向量模型,编码端使用随机卷积算子对各通道进行快速采样,生成测量向量矩阵。解码端构建图稀疏正则化的联合重建模型,在稀疏变换域将高光谱图像分解为谱间的关联成分和差异成分,通过图结构化稀疏度量表征关联成分的空谱相关性,并约束谱间差异成分的稀疏性。进一步提出模型求解的交替方向乘子迭代算法,通过引入辅助变量与线性化技巧,使得每一子问题均存在解析解,降低了模型求解的复杂度。对多个实测数据集进行了对比实验,实验结果验证了该文模型与算法的有效性。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子与信息学报 2014 (12), p.2942-2948
Hauptverfasser: 孙玉宝, 李欢, 吴敏, 吴泽彬, 贺金平, 刘青山
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP751.1; 压缩感知重建是解决高光谱现有成像模式数据量大冗余度高问题的一个有效机制。针对高光谱图像的多通道特性,该文建立了高光谱压缩感知的多测量向量模型,编码端使用随机卷积算子对各通道进行快速采样,生成测量向量矩阵。解码端构建图稀疏正则化的联合重建模型,在稀疏变换域将高光谱图像分解为谱间的关联成分和差异成分,通过图结构化稀疏度量表征关联成分的空谱相关性,并约束谱间差异成分的稀疏性。进一步提出模型求解的交替方向乘子迭代算法,通过引入辅助变量与线性化技巧,使得每一子问题均存在解析解,降低了模型求解的复杂度。对多个实测数据集进行了对比实验,实验结果验证了该文模型与算法的有效性。
ISSN:1009-5896
DOI:10.3724/SP.J.1146.2014.00566