一种基于加权变形的2DPCA的人脸特征提取方法
该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分别对人脸3个子部分分别提取特征,然后根据最近邻理论和权值进行分类。经过在ORL人脸库和YALE人脸库的实验研究表明:与2DPCA相比,提高了人脸空间的识别率,压缩了人脸空间的系数,减少了识别时间;在识别的准确率方面,更优于传统的Fisherfaces,IC,Kernel Eigenfaces的算法。...
Gespeichert in:
Veröffentlicht in: | Dian zi yu xin xi xue bao = Journal of electronics & information technology 2011, Vol.33 (4), p.769-774 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分别对人脸3个子部分分别提取特征,然后根据最近邻理论和权值进行分类。经过在ORL人脸库和YALE人脸库的实验研究表明:与2DPCA相比,提高了人脸空间的识别率,压缩了人脸空间的系数,减少了识别时间;在识别的准确率方面,更优于传统的Fisherfaces,IC,Kernel Eigenfaces的算法。 |
---|---|
ISSN: | 1009-5896 |
DOI: | 10.3724/SP.J.1146.2010.01003 |