胎儿心电信号的无创提取:基于时间卷积编解码网络
目的 实现从孕妇腹壁混合心电信号中提取微弱的胎儿心电信号,为准确估计胎儿心率、分析胎儿心电波形等提供基础.方法 利用深度卷积网络(deep CNN)优越的非线性映射能力,本文提出了一种基于时间卷积编解码网络的非线性自适应噪声消除(nonlinear ANC)提取框架,以实现胎儿心电信号的有效提取.首先构建适用于处理胎儿心电信号的深度时间卷积网络(TCED-Net)模型作为非线性映射工具;然后以孕妇胸部心电信号为参考,利用该模型估计孕妇腹壁混合心电信号中的母体心电成分;最后从腹壁混合信号中减去所估计的母体心电成分,以得到完整的胎儿心电信号.实验利用合成心电数据(FECGSYNDB)和临床心电数据...
Gespeichert in:
Veröffentlicht in: | 南方医科大学学报 2022, Vol.42 (11), p.1672-1680 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 目的 实现从孕妇腹壁混合心电信号中提取微弱的胎儿心电信号,为准确估计胎儿心率、分析胎儿心电波形等提供基础.方法 利用深度卷积网络(deep CNN)优越的非线性映射能力,本文提出了一种基于时间卷积编解码网络的非线性自适应噪声消除(nonlinear ANC)提取框架,以实现胎儿心电信号的有效提取.首先构建适用于处理胎儿心电信号的深度时间卷积网络(TCED-Net)模型作为非线性映射工具;然后以孕妇胸部心电信号为参考,利用该模型估计孕妇腹壁混合心电信号中的母体心电成分;最后从腹壁混合信号中减去所估计的母体心电成分,以得到完整的胎儿心电信号.实验利用合成心电数据(FECGSYNDB)和临床心电数据(NIFECGDB、PCDB)对方法性能进行测试与对比.结果 本文方法在FECGSYNDB上的胎儿R峰检测精度([F1]值)、均方误差(MSE)和质量信噪比(qSNR)分别达到98.89%,0.20和7.84;在NIFECGDB上的[F1]值达到99.1%;在PCDB上的[F1]值达到98.61%.在不同数据集中较之EKF([F1=]93.84%)、ES-RNN([F1]=97.20%)和AECG-DecompNet([F1]=95.43%)等现有性能最佳的算法,本文方法的R峰检测精度指标分别高出5.05%、1.9%和3.18%,均优于现有最佳方法.结论 与现有算法相比,本文方法可以提取出更为清晰的胎儿心电信号,对孕期进行有效的胎儿健康监护具有一定的应用价值. |
---|---|
ISSN: | 1673-4254 |
DOI: | 10.12122/j.issn.1673-4254.2022.11.11 |