Ancient deep roots for Mesozoic world-class gold deposits in the north China craton: An integrated genetic perspective
The North China Craton (NCC) hosts some of the world-class gold deposits that formed more than 2 billion years after the major orogenic cycles and cratonization. The diverse models for the genesis of these deposits remain equivocal, and mostly focused on the craton margin examples, although synchron...
Gespeichert in:
Veröffentlicht in: | Di xue qian yuan. 2020-01, Vol.11 (1), p.203-214 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The North China Craton (NCC) hosts some of the world-class gold deposits that formed more than 2 billion years after the major orogenic cycles and cratonization. The diverse models for the genesis of these deposits remain equivocal, and mostly focused on the craton margin examples, although synchronous deposits formed in the interior domains. Here we adopt an integrated geological and geophysical perspective to evaluate the possible factors that contributed to the formation of the major gold deposits in the NCC. In the Archean tectonic framework of the NCC, the locations of the major gold deposits fall within or adjacent to greenstone belts or the margins of micro-continents. In the Paleoproterozoic framework, they are markedly aligned along two major collisional sutures – the Trans North China Orogen and the Jiao-Liao-Ji Belt. Since the Mesozoic intrusions hosting these deposits do not carry adequate signals for the source of gold, we explore the deep roots based on available geophysical data. We show that the gold deposits are preferentially distributed above zones of uplifted MOHO and shallow LAB corresponding to thinned crust and eroded sub-lithospheric mantle, and that the mineralization is located above regions of high heat flow representing mantle upwelling. The NCC was at the center of a multi-convergent regime during the Mesozoic which intensely churned the mantle and significantly enriched it. The geophysical data on Moho and LAB upwarp from the centre towards east of the craton is more consistent with paleo-Pacific slab subduction from the east exerting the dominant control on lithospheric thinning. Based on these results, and together with an evaluation of the geochemical and isotopic features of the Mesozoic magmatic intrusions hosting the gold mineralization, we propose a genetic model that invokes reworking of ancient Au archives preserved in the lower crust and metasomatised upper mantle and which were generated through multiple subduction, underplating and cumulation events associated with cratonization of the NCC as well as the subduction-collision of Yangtze Craton with the NCC. The heat and material input along zones of heterogeneously thinned lithosphere from a rising turbulent mantle triggered by Mesozoic convergent margins surrounding the craton aided in reworking the deep roots of the ancient Au reservoirs, leading to the major gold metallogeny along craton margins as well as in the interior of the NCC.
[Display omitted]
•Mesozoic w |
---|---|
ISSN: | 1674-9871 2588-9192 |
DOI: | 10.1016/j.gsf.2019.03.002 |