IPv6远程监控网络下无状态通信数据的多尺度离群点挖掘算法
TP181; 为了准确挖掘离群点,降低离群点对通信数据造成的影响,对IPv6远程监控网络无状态通信数据多尺度离群点挖掘算法进行了研究.通过IPv6远程监控网络获得无状态通信数据,依据提取的无状态通信数据的季节性、趋势性和自相似性特征,运用傅里叶变换将无状态通信数据分为两类.再用K均值法对两类分别进行聚类,确定无状态通信数据的邻域,将其作为基础.采用卷积神经网络对无状态通信数据进行离群点挖掘,初始化卷积神经网络;根据卷积神经网络输出值,判别该网络是否符合停止条件,反复重复卷积神经网络的运算步骤,挖掘全部离群点,实现无状态通信数据多尺度离群点挖掘.实验结果表明,无状态通信数据类别的个数越少,挖掘效...
Gespeichert in:
Veröffentlicht in: | 电信科学 2023, Vol.39 (8), p.118-126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP181; 为了准确挖掘离群点,降低离群点对通信数据造成的影响,对IPv6远程监控网络无状态通信数据多尺度离群点挖掘算法进行了研究.通过IPv6远程监控网络获得无状态通信数据,依据提取的无状态通信数据的季节性、趋势性和自相似性特征,运用傅里叶变换将无状态通信数据分为两类.再用K均值法对两类分别进行聚类,确定无状态通信数据的邻域,将其作为基础.采用卷积神经网络对无状态通信数据进行离群点挖掘,初始化卷积神经网络;根据卷积神经网络输出值,判别该网络是否符合停止条件,反复重复卷积神经网络的运算步骤,挖掘全部离群点,实现无状态通信数据多尺度离群点挖掘.实验结果表明,无状态通信数据类别的个数越少,挖掘效率越高;所提方法能准确挖掘IPv6远程监控网络无状态通信数据多尺度离群点的个数,准确分析离群原因. |
---|---|
ISSN: | 1000-0801 |
DOI: | 10.11959/j.issn.1000-0801.2023149 |