基于吸引模式的局部二阶梯度轮廓人脸识别算法

TP391; 针对现有LDP类算法在特征提取有效性和特征编码稳定性之间难以平衡的问题,提出一种吸引局部二阶梯度轮廓(ALSGC)模式,以提升人脸识别性能.首先,利用Kirsch算子计算人脸的邻域边缘响应图;其次,引入吸引描述子,参考边缘响应图的局部、全局平均灰度值和邻域中心灰度值完成局部吸引模式编码;再次,遍历整幅图像,得到人脸ALSGC特征图并对ALSGC特征图分块分别计算,得到各个分块中不同模式的统计直方图;最后,级联所有分块的统计直方图后生成对应的特征向量,以支持向量机完成分类识别.所提算法克服了LBP、LDP、LDN等算法提取一阶特征有效性的不足,以及DLDP、CSLDP、GCSLDP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电信科学 2021, Vol.37 (7), p.96-106
Hauptverfasser: 叶学义, 钱丁炜, 应娜, 王涛
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP391; 针对现有LDP类算法在特征提取有效性和特征编码稳定性之间难以平衡的问题,提出一种吸引局部二阶梯度轮廓(ALSGC)模式,以提升人脸识别性能.首先,利用Kirsch算子计算人脸的邻域边缘响应图;其次,引入吸引描述子,参考边缘响应图的局部、全局平均灰度值和邻域中心灰度值完成局部吸引模式编码;再次,遍历整幅图像,得到人脸ALSGC特征图并对ALSGC特征图分块分别计算,得到各个分块中不同模式的统计直方图;最后,级联所有分块的统计直方图后生成对应的特征向量,以支持向量机完成分类识别.所提算法克服了LBP、LDP、LDN等算法提取一阶特征有效性的不足,以及DLDP、CSLDP、GCSLDP等算法提取的二阶特征对表情、姿态、饰物遮挡、光照、随机噪声等变化敏感的缺点,较好地实现了特征提取有效性与特征编码稳定性的平衡,兼顾了识别率和稳健性.
ISSN:1000-0801
DOI:10.11959/j.issn.1000-0801.2021140