Energy Paths That Sustain the Warm-Sector Torrential Rainfall over South China and Their Contrasts to the Frontal Rainfall: A Case Study
Predicting warm-sector torrential rainfall over South China, which is famous for its destructive power, is one of the most challenging issues of the current numerical forecast field. Insufficient understanding of the key mechanisms underlying this type of event is the root cause. Since understanding...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2022-09, Vol.39 (9), p.1519-1535 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Predicting warm-sector torrential rainfall over South China, which is famous for its destructive power, is one of the most challenging issues of the current numerical forecast field. Insufficient understanding of the key mechanisms underlying this type of event is the root cause. Since understanding the energetics is crucial to understanding the evolutions of various types of weather systems, a general methodology for investigating energetics of torrential rainfall is provided in this study. By applying this methodology to a persistent torrential rainfall event which had concurrent frontal and warm-sector precipitation, the first physical image on the energetics of the warm-sector torrential rainfall is established. This clarifies the energy sources for producing the warm-sector rainfall during this event. For the first time, fundamental similarities and differences between the warm-sector and frontal torrential rainfall are shown in terms of energetics. It is found that these two types of rainfall mainly differed from each other in the lower-tropospheric dynamical features, and their key differences lay in energy sources. Scale interactions (mainly through downscale energy cascade and transport) were a dominant factor for the warm-sector torrential rainfall during this event, whereas, for the frontal torrential rainfall, they were only of secondary importance. Three typical signals in the background environment are found to have supplied energy to the warm-sector torrential rainfall, with the quasi-biweekly oscillation having contributed the most. |
---|---|
ISSN: | 0256-1530 1861-9533 |
DOI: | 10.1007/s00376-021-1336-z |