Diurnal Variations of Precipitation over the Steep Slopes of the Himalayas Observed by TRMM PR and VIRS

This study investigates diurnal variations of precipitation during May–August, 1998–2012, over the steep slopes of the Himalayas and adjacent regions (flat Gangetic Plains–FGP, foothills of the Himalayas–FHH, the steep slope of the southern Himalayas–SSSH, and the Himalayas-Tibetan Plateau tableland...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2021-04, Vol.38 (4), p.641-660
Hauptverfasser: Pan, Xiao, Fu, Yunfei, Yang, Sen, Gong, Ying, Li, Deqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates diurnal variations of precipitation during May–August, 1998–2012, over the steep slopes of the Himalayas and adjacent regions (flat Gangetic Plains–FGP, foothills of the Himalayas–FHH, the steep slope of the southern Himalayas–SSSH, and the Himalayas-Tibetan Plateau tableland–HTPT). Diurnal variations are analyzed at the pixel level utilizing collocated TRMM precipitation radar and visible infrared data. The results indicate that rain parameters (including rain frequency, rain rate, and storm top altitude) are predominantly characterized by afternoon maxima and morning minima at HTPT and FGP, whereas, maximum rain parameters at FHH typically occur in the early morning. Rain parameters at SSSH are characterized by double peaks; one in the afternoon and one at midnight. Over HTPT and FGP, convective activity is strongest in the afternoon with the thickest crystallization layer. Over FHH, the vertical structure of precipitation develops most vigorously in the early morning when the most intense collision and growth of precipitation particles occurs. Over SSSH, moist convection is stronger in the afternoon and at midnight with strong mixing of ice and water particles. The results of harmonic analysis show that rain bands move southward from lower elevation of SSSH to FHH with apparent southward propagation of the harmonic phase from midnight to early morning. Moreover, the strongest diurnal harmonic is located at HTPT, having a diurnal harmonic percentage variance of up to 90%. Large-scale atmospheric circulation patterns exhibit obvious diurnal variability and correspond well to the distribution of precipitation.
ISSN:0256-1530
1861-9533
DOI:10.1007/s00376-020-0246-9