An Examination of the Predictability of Tropical Cyclone Genesis in High-Resolution Coupled Models with Dynamically Downscaled Coupled Data Assimilation Initialization
Predicting tropical cyclone (TC) genesis is of great societal importance but scientifically challenging. It requires fine-resolution coupled models that properly represent air-sea interactions in the atmospheric responses to local warm sea surface temperatures and feedbacks, with aid from coherent c...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2020-09, Vol.37 (9), p.939-950 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Predicting tropical cyclone (TC) genesis is of great societal importance but scientifically challenging. It requires fine-resolution coupled models that properly represent air-sea interactions in the atmospheric responses to local warm sea surface temperatures and feedbacks, with aid from coherent coupled initialization. This study uses three sets of high-resolution regional coupled models (RCMs) covering the Asia-Pacific (AP) region initialized with local observations and dynamically downscaled coupled data assimilation to evaluate the predictability of TC genesis in the West Pacific. The AP-RCMs consist of three sets of high-resolution configurations of the Weather Research and Forecasting-Regional Ocean Model System (WRF-ROMS): 27-km WRF with 9-km ROMS, and 9-km WRF with 3-km ROMS. In this study, a 9-km WRF with 9-km ROMS coupled model system is also used in a case test for the predictability of TC genesis. Since the local sea surface temperatures and wind shear conditions that favor TC formation are better resolved, the enhanced-resolution coupled model tends to improve the predictability of TC genesis, which could be further improved by improving planetary boundary layer physics, thus resolving better air-sea and air-land interactions. |
---|---|
ISSN: | 0256-1530 1861-9533 |
DOI: | 10.1007/s00376-020-9220-9 |