Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery

The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2017-02, Vol.34 (2), p.272-282
Hauptverfasser: Wang, Zhenhui, Sui, Xinxiu, Zhang, Qing, Yang, Lu, Zhao, Hang, Tang, Min, Zhan, Yizhe, Zhang, Zhiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 2
container_start_page 272
container_title Advances in atmospheric sciences
container_volume 34
creator Wang, Zhenhui
Sui, Xinxiu
Zhang, Qing
Yang, Lu
Zhao, Hang
Tang, Min
Zhan, Yizhe
Zhang, Zhiguo
description The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.
doi_str_mv 10.1007/s00376-016-6098-7
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e201702013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671133338</cqvip_id><wanfj_id>dqkxjz_e201702013</wanfj_id><sourcerecordid>dqkxjz_e201702013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5ae13ff4d360a28c9d886b01c19ec10c6a7d6126b8b177fa71db48066c2fa6223</originalsourceid><addsrcrecordid>eNqF0U1vEzEQBmCrAqmh8AN6W8EFDi4ee_11rNKmjVSEhAoSl1qO104TdteJvaEtv74OW1WIA1xsyXreGWsGoWMgJ0CI_JgJYVJgAgILohWWB2gCSgDWnLEXaEIoFxg4I4foVc7rojVTMEE3Zz6tftphFfsqhmraxl2DZ8l7_MUv94-nQxfz5rYoV32Kv90374aYchVS7KrZd0zPq-sCOttW8z4km3xTzTu79OnhNXoZbJv9m6f7CH2dnV9PL_HV54v59PQKu7pmA-bWAwuhbpggliqnG6XEgoAD7R0QJ6xsBFCxUAuQMlgJzaJWRAhHgxWUsiP0Yax7Z_tg-6VZx13qS0fTbH_cr38ZTwlIUg5W7PvRblLc7nweTLfKzret7X3cZQMatBaUa_J_qriuFVVaFfruL_r8haK4ULzmvCgYlUsx5-SD2aRVZ9ODAWL2izTjIk1ZpNkv0siSoWMmF9uXqf5R-R-ht0-NbmO_3JbccychoUyBMcUeAVhpqYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855685455</pqid></control><display><type>article</type><title>Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Zhenhui ; Sui, Xinxiu ; Zhang, Qing ; Yang, Lu ; Zhao, Hang ; Tang, Min ; Zhan, Yizhe ; Zhang, Zhiguo</creator><creatorcontrib>Wang, Zhenhui ; Sui, Xinxiu ; Zhang, Qing ; Yang, Lu ; Zhao, Hang ; Tang, Min ; Zhan, Yizhe ; Zhang, Zhiguo</creatorcontrib><description>The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-016-6098-7</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Aerosols ; Algorithms ; Atmospheric Sciences ; Clouds ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Infrared imaging systems ; Meteorology ; NCEP再分析资料 ; Original Paper ; Surface temperature ; Troposphere ; Water vapor ; 二阶差分 ; 噪声等效温差 ; 图像显示 ; 大气 ; 热红外图像 ; 跟踪技术 ; 运动矢量</subject><ispartof>Advances in atmospheric sciences, 2017-02, Vol.34 (2), p.272-282</ispartof><rights>Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Advances in Atmospheric Sciences is a copyright of Springer, 2017.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5ae13ff4d360a28c9d886b01c19ec10c6a7d6126b8b177fa71db48066c2fa6223</citedby><cites>FETCH-LOGICAL-c443t-5ae13ff4d360a28c9d886b01c19ec10c6a7d6126b8b177fa71db48066c2fa6223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84334X/84334X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-016-6098-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-016-6098-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Zhenhui</creatorcontrib><creatorcontrib>Sui, Xinxiu</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Zhan, Yizhe</creatorcontrib><creatorcontrib>Zhang, Zhiguo</creatorcontrib><title>Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><addtitle>Advances in Atmospheric Sciences</addtitle><description>The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.</description><subject>Aerosols</subject><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Clouds</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Infrared imaging systems</subject><subject>Meteorology</subject><subject>NCEP再分析资料</subject><subject>Original Paper</subject><subject>Surface temperature</subject><subject>Troposphere</subject><subject>Water vapor</subject><subject>二阶差分</subject><subject>噪声等效温差</subject><subject>图像显示</subject><subject>大气</subject><subject>热红外图像</subject><subject>跟踪技术</subject><subject>运动矢量</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0U1vEzEQBmCrAqmh8AN6W8EFDi4ee_11rNKmjVSEhAoSl1qO104TdteJvaEtv74OW1WIA1xsyXreGWsGoWMgJ0CI_JgJYVJgAgILohWWB2gCSgDWnLEXaEIoFxg4I4foVc7rojVTMEE3Zz6tftphFfsqhmraxl2DZ8l7_MUv94-nQxfz5rYoV32Kv90374aYchVS7KrZd0zPq-sCOttW8z4km3xTzTu79OnhNXoZbJv9m6f7CH2dnV9PL_HV54v59PQKu7pmA-bWAwuhbpggliqnG6XEgoAD7R0QJ6xsBFCxUAuQMlgJzaJWRAhHgxWUsiP0Yax7Z_tg-6VZx13qS0fTbH_cr38ZTwlIUg5W7PvRblLc7nweTLfKzret7X3cZQMatBaUa_J_qriuFVVaFfruL_r8haK4ULzmvCgYlUsx5-SD2aRVZ9ODAWL2izTjIk1ZpNkv0siSoWMmF9uXqf5R-R-ht0-NbmO_3JbccychoUyBMcUeAVhpqYE</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Wang, Zhenhui</creator><creator>Sui, Xinxiu</creator><creator>Zhang, Qing</creator><creator>Yang, Lu</creator><creator>Zhao, Hang</creator><creator>Tang, Min</creator><creator>Zhan, Yizhe</creator><creator>Zhang, Zhiguo</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Beijing Meteorological Office(Da Xing), Beijing 102600, China</general><general>School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China%School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7UA</scope><scope>C1K</scope><scope>7QH</scope><scope>7TN</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20170201</creationdate><title>Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery</title><author>Wang, Zhenhui ; Sui, Xinxiu ; Zhang, Qing ; Yang, Lu ; Zhao, Hang ; Tang, Min ; Zhan, Yizhe ; Zhang, Zhiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5ae13ff4d360a28c9d886b01c19ec10c6a7d6126b8b177fa71db48066c2fa6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosols</topic><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Clouds</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Infrared imaging systems</topic><topic>Meteorology</topic><topic>NCEP再分析资料</topic><topic>Original Paper</topic><topic>Surface temperature</topic><topic>Troposphere</topic><topic>Water vapor</topic><topic>二阶差分</topic><topic>噪声等效温差</topic><topic>图像显示</topic><topic>大气</topic><topic>热红外图像</topic><topic>跟踪技术</topic><topic>运动矢量</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhenhui</creatorcontrib><creatorcontrib>Sui, Xinxiu</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Zhan, Yizhe</creatorcontrib><creatorcontrib>Zhang, Zhiguo</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhenhui</au><au>Sui, Xinxiu</au><au>Zhang, Qing</au><au>Yang, Lu</au><au>Zhao, Hang</au><au>Tang, Min</au><au>Zhan, Yizhe</au><au>Zhang, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><addtitle>Advances in Atmospheric Sciences</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>34</volume><issue>2</issue><spage>272</spage><epage>282</epage><pages>272-282</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-016-6098-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1530
ispartof Advances in atmospheric sciences, 2017-02, Vol.34 (2), p.272-282
issn 0256-1530
1861-9533
language eng
recordid cdi_wanfang_journals_dqkxjz_e201702013
source SpringerLink Journals; Alma/SFX Local Collection
subjects Aerosols
Algorithms
Atmospheric Sciences
Clouds
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Infrared imaging systems
Meteorology
NCEP再分析资料
Original Paper
Surface temperature
Troposphere
Water vapor
二阶差分
噪声等效温差
图像显示
大气
热红外图像
跟踪技术
运动矢量
title Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20Cloud-Free-Region%20Atmospheric%20Motion%20Vectors%20from%20FY-2E%20Thermal%20Infrared%20Imagery&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Wang,%20Zhenhui&rft.date=2017-02-01&rft.volume=34&rft.issue=2&rft.spage=272&rft.epage=282&rft.pages=272-282&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-016-6098-7&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e201702013%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855685455&rft_id=info:pmid/&rft_cqvip_id=671133338&rft_wanfj_id=dqkxjz_e201702013&rfr_iscdi=true