Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery

The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2017-02, Vol.34 (2), p.272-282
Hauptverfasser: Wang, Zhenhui, Sui, Xinxiu, Zhang, Qing, Yang, Lu, Zhao, Hang, Tang, Min, Zhan, Yizhe, Zhang, Zhiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.
ISSN:0256-1530
1861-9533
DOI:10.1007/s00376-016-6098-7