Application of an Error Statistics Estimation Method to the PSAS Forecast Error Covariance Model
In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfi...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2006, Vol.23 (1), p.33-44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfiysical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed. |
---|---|
ISSN: | 0256-1530 1861-9533 |
DOI: | 10.1007/s00376-006-0004-7 |