South Asian high and Asian-Pacific-American climate teleconnection
Growing evidence indicates that the Asian monsoon plays an important role in affecting the weather and climate outside of Asia. However, this active role of the monsoon has not been demonstrated as thoroughly as has the variability of the monsoon caused by various impacting factors such as sea surfa...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2005-11, Vol.22 (6), p.915-923 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Growing evidence indicates that the Asian monsoon plays an important role in affecting the weather and climate outside of Asia. However, this active role of the monsoon has not been demonstrated as thoroughly as has the variability of the monsoon caused by various impacting factors such as sea surface temperature and land surface. This study investigates the relationship between the Asian monsoon and the climate anomalies in the Asian-Pacific-American (APA) sector. A hypothesis is tested that the variability of the upper-tropospheric South Asian high (SAH), which is closely associated with the overall heating of the large-scale Asian monsoon, is linked to changes in the subtropical western Pacific high (SWPH), the mid-Pacific trough, and the Mexican high. The changes in these circulation systems cause variability in surface temperature and precipitation in the APA region. A stronger SAH is accompanied by a stronger and more extensive SWPH. The enlargement of the SWPH weakens the mid-Pacific trough. As a result, the southern portion of the Mexican high becomes stronger. These changes are associated with changes in atmospheric teleconnections, precipitation, and surface temperature throughout the APA region. When the SAH is stronger, precipitation increases in southern Asia, decreases over the Pacific Ocean, and increases over the Central America. Precipitation also increases over Australia and central Africa and decreases in the Mediterranean region. While the signals in surface temperature are weak over the tropical land portion, they are apparent in the mid latitudes and over the eastern Pacific Ocean. |
---|---|
ISSN: | 0256-1530 1861-9533 |
DOI: | 10.1007/bf02918690 |