Sedimentary Characteristics and Model of Gravity Flow Depositional System for the First Member of Upper Miocene Huangliu Formation in Dongfang Area, Yinggehai Basin, Northwestern South China Sea
The gravity flow deposit were mainly developed in the lowstand systems tract(LST) of the first member of Upper Miocene Huangliu Formation(Ehl1) in Dongfang area, Yinggehai Basin, has become a valuable target for gas exploration and production. The gravity flow sedimentary characteristics of lithofac...
Gespeichert in:
Veröffentlicht in: | Journal of earth science (Wuhan, China) China), 2014-06, Vol.25 (3), p.506-518 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gravity flow deposit were mainly developed in the lowstand systems tract(LST) of the first member of Upper Miocene Huangliu Formation(Ehl1) in Dongfang area, Yinggehai Basin, has become a valuable target for gas exploration and production. The gravity flow sedimentary characteristics of lithofacies associations, sedimentary texture, seismic facies and logging facies were described in detail on the basis of integrated analysis of cores, logging and seismic data. The sedimentary microfacies types composed of neritic sandbar, continental shelf mud, main channel, bifurcated or cross-cutting distributary channel, overspill, and natural levee are revealed under the constraint of high resolution sequence stratigraphic framework in the Ehl1. The gravity flow deposit system in the LST is divided into three evolution stages corresponding to periods of three parasequence sets. The gravity flow deposit was induced in the early LST, expanded rapidly in the middle LST and decreased slightly in the late LST. But its developing scale decreased sharply in the transgression systems tract(TST) and finally vanished in the highstand systems tract(HST). This spatial evolution rule is constrained by the integrated function of sediments supply of the Vietnam Blue River in the LST, the development of local gradient change in sea floor(micro-topography, i.e., flexure slope break), and the fall in relative sea level. On the basics of the deep study of the coupling relationship among the three main control factors, the sedimentary model is established as an optimal component of "source-channel-sink" for shallow marine turbidite submarine fan. |
---|---|
ISSN: | 1674-487X 1867-111X |
DOI: | 10.1007/s12583-014-0451-5 |