How Well does BCC_CSM1.1 Reproduce the 20th Century Climate Change over China

The historical simulation of phase five of the Coupled Model Intercomparison Project (CMIP5) ex- periments performed by the Beijing Climate Center cli- mate system model (BCC_CSM1.1) is evaluated regard- ing the time evolutions of the global and China mean sur- face air temperature (SAT) and surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric and oceanic science letters = Daqi-he-haiyang-kexue-kuaibao 2013, Vol.6 (1), p.21-26
1. Verfasser: XIN Xiao-Ge WU Tong-Wen LI Jiang-Long WANG Zai-Zhi LI Wei-Ping WU Fang-Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The historical simulation of phase five of the Coupled Model Intercomparison Project (CMIP5) ex- periments performed by the Beijing Climate Center cli- mate system model (BCC_CSM1.1) is evaluated regard- ing the time evolutions of the global and China mean sur- face air temperature (SAT) and surface climate change over China in recent decades. BCC CSM1.1 has better capability at reproducing the time evolutions of the global and China mean SAT than BCC_CSM1.0. By the year 2005, the BCC_CSM1.1 model simulates a warming am- plitude of approximately I℃ in China over the 1961- 1990 mean, which is consistent with observation. The distributions of the warming trend over China in the four seasons during 1958-2004 are basically reproduced by BCC CSM1.1, with the warmest occurring in winter. Al- though the cooling signal of Southwest China in spring is partly reproduced by BCC_CSM1.1, the cooling trend over central eastern China in summer is omitted by the model. For the precipitation change, BCC_CSM1.1 has good performance in spring, with drought in Southeast China. After removing the linear trend, the interannual correlation map between the model and the observation shows that the model has better capability at reproducing the summer SAT over China and spring precipitation over Southeast China.
ISSN:1674-2834
2376-6123
DOI:10.1080/16742834.2013.11447053