Hopf群代数上的交叉积

O153; 首先给出了Hopf群代数的群交叉积定义,并给出了群交叉积是群代数的充分必要条件.引入了Hopf群代数的cleft扩张理论,并证明了Hopf群代数的交叉积与cleft扩张等价.然后,给出了2个Hopf群交叉积等价的充分必要条件.最后,结合Hopf群交叉积与cleft扩张的等价理论得到,群文叉积一般由2-余循环构造,作为代数同构于带有卷积可逆映射的2-余循环的群交叉积.一般2-余循环的余单位性质等价于带有卷积可逆映射的2-余循环余单位性质,通常意义下的2-余循环和弱作用结合条件等价于带有卷积可逆映射的2-余循环及其弱作用结合条件;同时得到,由一般2-余循环构造的Hopf π-交叉积代数...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:东南大学学报(英文版) 2021, Vol.37 (3), p.339-342
Hauptverfasser: 游弥漫, 鹿道伟, 王栓宏
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:O153; 首先给出了Hopf群代数的群交叉积定义,并给出了群交叉积是群代数的充分必要条件.引入了Hopf群代数的cleft扩张理论,并证明了Hopf群代数的交叉积与cleft扩张等价.然后,给出了2个Hopf群交叉积等价的充分必要条件.最后,结合Hopf群交叉积与cleft扩张的等价理论得到,群文叉积一般由2-余循环构造,作为代数同构于带有卷积可逆映射的2-余循环的群交叉积.一般2-余循环的余单位性质等价于带有卷积可逆映射的2-余循环余单位性质,通常意义下的2-余循环和弱作用结合条件等价于带有卷积可逆映射的2-余循环及其弱作用结合条件;同时得到,由一般2-余循环构造的Hopf π-交叉积代数同构于带有卷积可逆映射的2-余循环构造的Hopf π-交叉积代数.
ISSN:1003-7985
DOI:10.3969/j.issn.1003-7985.2021.03.015