Hopf群代数上的交叉积
O153; 首先给出了Hopf群代数的群交叉积定义,并给出了群交叉积是群代数的充分必要条件.引入了Hopf群代数的cleft扩张理论,并证明了Hopf群代数的交叉积与cleft扩张等价.然后,给出了2个Hopf群交叉积等价的充分必要条件.最后,结合Hopf群交叉积与cleft扩张的等价理论得到,群文叉积一般由2-余循环构造,作为代数同构于带有卷积可逆映射的2-余循环的群交叉积.一般2-余循环的余单位性质等价于带有卷积可逆映射的2-余循环余单位性质,通常意义下的2-余循环和弱作用结合条件等价于带有卷积可逆映射的2-余循环及其弱作用结合条件;同时得到,由一般2-余循环构造的Hopf π-交叉积代数...
Gespeichert in:
Veröffentlicht in: | 东南大学学报(英文版) 2021, Vol.37 (3), p.339-342 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | O153; 首先给出了Hopf群代数的群交叉积定义,并给出了群交叉积是群代数的充分必要条件.引入了Hopf群代数的cleft扩张理论,并证明了Hopf群代数的交叉积与cleft扩张等价.然后,给出了2个Hopf群交叉积等价的充分必要条件.最后,结合Hopf群交叉积与cleft扩张的等价理论得到,群文叉积一般由2-余循环构造,作为代数同构于带有卷积可逆映射的2-余循环的群交叉积.一般2-余循环的余单位性质等价于带有卷积可逆映射的2-余循环余单位性质,通常意义下的2-余循环和弱作用结合条件等价于带有卷积可逆映射的2-余循环及其弱作用结合条件;同时得到,由一般2-余循环构造的Hopf π-交叉积代数同构于带有卷积可逆映射的2-余循环构造的Hopf π-交叉积代数. |
---|---|
ISSN: | 1003-7985 |
DOI: | 10.3969/j.issn.1003-7985.2021.03.015 |