面向图像分类的核主成分分析网络

TP391; 为了能够用线性分类器对非线性特征进行分类,同时提高图像的分类正确率,提出了一种核主成分分析网络(KPCANet).首先通过核主成分分析算法将数据映射到高维空间中,使得数据线性可分,然后建立一个2层的KPCANet,提取出图像的主特征,最后将图像的主特征输入线性分类器中进行分类.实验结果表明,KPCANet对于人脸识别、物体识别以及手写数字识别效果良好,其分类效果优于现存的主成分分析网络(PCANet).同时,KPCANet的成分提取效果不受光照条件变化的影响,且对于遮挡以及微小的形变提取效果稳定....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:东南大学学报(英文版) 2015, Vol.31 (4), p.469-473
Hauptverfasser: 吴丹, 伍家松, 曾瑞, 姜龙玉, Lotfi Senhadji, 舒华忠
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP391; 为了能够用线性分类器对非线性特征进行分类,同时提高图像的分类正确率,提出了一种核主成分分析网络(KPCANet).首先通过核主成分分析算法将数据映射到高维空间中,使得数据线性可分,然后建立一个2层的KPCANet,提取出图像的主特征,最后将图像的主特征输入线性分类器中进行分类.实验结果表明,KPCANet对于人脸识别、物体识别以及手写数字识别效果良好,其分类效果优于现存的主成分分析网络(PCANet).同时,KPCANet的成分提取效果不受光照条件变化的影响,且对于遮挡以及微小的形变提取效果稳定.
ISSN:1003-7985
DOI:10.3969/j.issn.1003-7985.2015.04.007