基于神经网络和多小波变换的数字水印算法

TP391; 基于图像多小波域低频系数子块的相似性,利用神经网络的学习特性,提出了新的盲数字水印算法.将宿主图像变化为多小波域,把水印加入到宿主图像多小波变化后的低频系数中.通过后向传播算法的神经网络训练出宿主图像与嵌入的水印信号之间的关系特征,利用神经网络具有学习和自适应的特性,训练后的神经网络能够完全恢复嵌入到宿主图像中的水印信息.仿真实验表明,该算法针对各种攻击具有很好的鲁棒性,特别是在水印检测时不需要原始图像....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:东南大学学报(英文版) 2007, Vol.23 (2), p.211-215
Hauptverfasser: 王振飞, 宋胜利
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP391; 基于图像多小波域低频系数子块的相似性,利用神经网络的学习特性,提出了新的盲数字水印算法.将宿主图像变化为多小波域,把水印加入到宿主图像多小波变化后的低频系数中.通过后向传播算法的神经网络训练出宿主图像与嵌入的水印信号之间的关系特征,利用神经网络具有学习和自适应的特性,训练后的神经网络能够完全恢复嵌入到宿主图像中的水印信息.仿真实验表明,该算法针对各种攻击具有很好的鲁棒性,特别是在水印检测时不需要原始图像.
ISSN:1003-7985
DOI:10.3969/j.issn.1003-7985.2007.02.012