Soil loss tolerance in the black soil region of Northeast China

Soil loss tolerance (/) is the maximum rate of annual soil erosion that is tolerated and still allows a high level of crop productivity to be sustained economically and indefinitely. In the black soil region of Northeast China, an empirically determined, default Tvalue of 200 (t/km2.a) is used for d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geographical sciences 2012-08, Vol.22 (4), p.737-751
Hauptverfasser: Duan, Xingwu, Xie, Yun, Liu, Baoyuan, Liu, Gang, Feng, Yanjie, Gao, Xiaofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil loss tolerance (/) is the maximum rate of annual soil erosion that is tolerated and still allows a high level of crop productivity to be sustained economically and indefinitely. In the black soil region of Northeast China, an empirically determined, default Tvalue of 200 (t/km2.a) is used for designing land restoration strategies for different types of soils. The ob- jective of this study was to provide a methodology to calculate a quantitative T for different black soil species. A field investigation was conducted to determine the typical soil profiles of 21 black soil species in the study area and a quantitative methodology based on a modified soil productivity index model was established to calculate the Tvalues. These values, which varied from 68 t/km2.a to 358 t/km2-a, yielded an average Tvalue of 141 t/km2.a for the 21 soil species. This is 29.5% lower than the current national standard T value. Two significant factors that influenced the T value were soil thickness and vulnerability to erosion. An acceptable reduction rate of soil productivity over a planned time period of 1% is recommended as necessary for maintaining long-term sustainable soil productivity. Compared with the cur- rently used of regional unified standard T value, the proposed method, which determines T using specific soil profile indices, has more practical implications for effective, sustainable management of soil and water conservation.
ISSN:1009-637X
1861-9568
DOI:10.1007/s11442-012-0959-5