基于卷积神经网络的风格迁移艺术字研究
TP391.41; 针对艺术字风格迁移只迁移风格图像的颜色特征、生成字形风格单一的问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的风格迁移艺术字的方法.该方法首先通过字库提取多种类型字体,自动生成内容图像,再经过预训练VGG19网络提取风格图像的抽象特征表示.构造Gram矩阵作为图像风格表征,最后利用L-BFGS算法进行迭代优化,生成具有特殊风格的艺术字体.结果与市面上艺术字生成器产生的艺术字进行对比,本文的风格迁移艺术字兼具其纹理特征和颜色特征,更具有美感....
Gespeichert in:
Veröffentlicht in: | 大连民族大学学报 2023, Vol.25 (1), p.69-72 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP391.41; 针对艺术字风格迁移只迁移风格图像的颜色特征、生成字形风格单一的问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的风格迁移艺术字的方法.该方法首先通过字库提取多种类型字体,自动生成内容图像,再经过预训练VGG19网络提取风格图像的抽象特征表示.构造Gram矩阵作为图像风格表征,最后利用L-BFGS算法进行迭代优化,生成具有特殊风格的艺术字体.结果与市面上艺术字生成器产生的艺术字进行对比,本文的风格迁移艺术字兼具其纹理特征和颜色特征,更具有美感. |
---|---|
ISSN: | 2096-1383 |
DOI: | 10.3969/j.issn.1009-315X.2023.01.012 |