基于卷积神经网络的风格迁移艺术字研究

TP391.41; 针对艺术字风格迁移只迁移风格图像的颜色特征、生成字形风格单一的问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的风格迁移艺术字的方法.该方法首先通过字库提取多种类型字体,自动生成内容图像,再经过预训练VGG19网络提取风格图像的抽象特征表示.构造Gram矩阵作为图像风格表征,最后利用L-BFGS算法进行迭代优化,生成具有特殊风格的艺术字体.结果与市面上艺术字生成器产生的艺术字进行对比,本文的风格迁移艺术字兼具其纹理特征和颜色特征,更具有美感....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:大连民族大学学报 2023, Vol.25 (1), p.69-72
Hauptverfasser: 许鑫亮, 杨泽昊, 闫宇, 李镇宇, 战国栋
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP391.41; 针对艺术字风格迁移只迁移风格图像的颜色特征、生成字形风格单一的问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的风格迁移艺术字的方法.该方法首先通过字库提取多种类型字体,自动生成内容图像,再经过预训练VGG19网络提取风格图像的抽象特征表示.构造Gram矩阵作为图像风格表征,最后利用L-BFGS算法进行迭代优化,生成具有特殊风格的艺术字体.结果与市面上艺术字生成器产生的艺术字进行对比,本文的风格迁移艺术字兼具其纹理特征和颜色特征,更具有美感.
ISSN:2096-1383
DOI:10.3969/j.issn.1009-315X.2023.01.012