BP神经网络和ARMA模型在中纬度TEC短期预测中的对比分析
P228; 在充分考虑TEC序列非平稳、非线性、高噪声特性前提下,以IGS提供的2017年电离层TEC格网数据为基准,运用BP神经网络和ARMA两种模型分别进行TEC 3 d预测,重点分析两种模型在不同季节时段、不同电离层活跃强度及不同样本长度下的TEC预测性能及精度.结果表明,在不同时段,两种模型均能很好地反映TEC的变化特性,其中ARMA模型在春、冬时段及整体预测精度上略优于BP神经网络.在平静期,两种模型的平均相对预测精度分别为87.3%和87.5%,预测效果相差较小;在活跃期,两种模型的平均相对预测精度分别为78.5%和75.5%,BP神经网络的精度比ARMA模型高3%.随着样本长度的...
Gespeichert in:
Veröffentlicht in: | 大地测量与地球动力学 2021, Vol.41 (3), p.262-267 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P228; 在充分考虑TEC序列非平稳、非线性、高噪声特性前提下,以IGS提供的2017年电离层TEC格网数据为基准,运用BP神经网络和ARMA两种模型分别进行TEC 3 d预测,重点分析两种模型在不同季节时段、不同电离层活跃强度及不同样本长度下的TEC预测性能及精度.结果表明,在不同时段,两种模型均能很好地反映TEC的变化特性,其中ARMA模型在春、冬时段及整体预测精度上略优于BP神经网络.在平静期,两种模型的平均相对预测精度分别为87.3%和87.5%,预测效果相差较小;在活跃期,两种模型的平均相对预测精度分别为78.5%和75.5%,BP神经网络的精度比ARMA模型高3%.随着样本长度的增加,BP神经网络在21 d样本处预测效果最佳,ARMA模型的预测精度随样本长度的增加呈降低趋势. |
---|---|
ISSN: | 1671-5942 |
DOI: | 10.14075/j.jgg.2021.03.008 |