EEMD-多尺度排列熵的GPS高程时间序列降噪方法
P228; 针对GPS高程时间序列受各类噪声干扰的影响,导致难以提取有用信息的问题,提出一种基于整体经验模态分解(EEMD)结合多尺度排列熵(MPE)的阈值降噪方法.该方法以EEMD为核心算法,将原始信号分解成一系列本征模态函数(IMF),并采用MPE作为指标将其分类为噪声IMF、混合IMF和信息IMF;然后利用阈值函数处理混合IMF,实现二次降噪;再重构降噪后的数据与信息IMF,获得降噪结果.仿真信号和实例分析结果表明,该方法与相关系数法、MPE法相比,降嗓评价指标RMSE、SNR和dnSNR均为最优,说明该降噪方法效果最好,本文方法获得的降噪结果能够更好地反映出时间序列本身的非线性变化特性...
Gespeichert in:
Veröffentlicht in: | 大地测量与地球动力学 2021, Vol.41 (2), p.111-220 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P228; 针对GPS高程时间序列受各类噪声干扰的影响,导致难以提取有用信息的问题,提出一种基于整体经验模态分解(EEMD)结合多尺度排列熵(MPE)的阈值降噪方法.该方法以EEMD为核心算法,将原始信号分解成一系列本征模态函数(IMF),并采用MPE作为指标将其分类为噪声IMF、混合IMF和信息IMF;然后利用阈值函数处理混合IMF,实现二次降噪;再重构降噪后的数据与信息IMF,获得降噪结果.仿真信号和实例分析结果表明,该方法与相关系数法、MPE法相比,降嗓评价指标RMSE、SNR和dnSNR均为最优,说明该降噪方法效果最好,本文方法获得的降噪结果能够更好地反映出时间序列本身的非线性变化特性,可为GPS高程时间序列分析提供可靠依据. |
---|---|
ISSN: | 1671-5942 |
DOI: | 10.14075/j.jgg.2021.02.001 |