Particle Swarm Optimization Embedded in Variable Neighborhood Search for Task Scheduling in Cloud Computing

In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:东华大学学报(英文版) 2013, Vol.30 (2), p.145-152
1. Verfasser: 郭力争 王永皎 赵曙光 沈士根 姜长元
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 2
container_start_page 145
container_title 东华大学学报(英文版)
container_volume 30
creator 郭力争 王永皎 赵曙光 沈士根 姜长元
description In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was formulated and a particle swarm optimization (PSO)algorithm embedded in the variable neighborhood search (VNS) to optimize the task scheduling was proposed. The experimental results show that the method is more effective than the PSO in processing cost,transferring cost, and running time. When the task is more complex,the effect is much better. So,the algorithm can resolve the task scheduling in cloud computing and it is feasible,valid,and efficient.
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_dhdxxb_e201302012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47024001</cqvip_id><wanfj_id>dhdxxb_e201302012</wanfj_id><sourcerecordid>dhdxxb_e201302012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1302-f5f5f24226e567ab9e863140b45860537673499cde8752958116d1c24490194e3</originalsourceid><addsrcrecordid>eNotjktrwzAQhH1ooSHNf1CPPRgkWQ_rWEz6gNAUnPZqZEm2ldhSKtsk7a-vQjp7WBi-3ZmbZIEYxynFGN4lq3HcwyiGOYFikRw-ZJis6g0oTzIMYHuc7GB_5WS9A-uhNlobDawDXzJYWUfu3di2q33ovNegNDKoDjQ-gJ0cD6BUndFzb117uSl6P2tQ-OE4T9G6T24b2Y9m9b-Xyefzele8ppvty1vxtEkVyiBOGxoHE4yZoYzLWpicZYjAmtCcQZpxxjMihNIm5xQLmiPENFKYEAGRICZbJo_XvyfpGunaau_n4GJipTt9PteVwfCSBBGO7MOVVZ137XdsWR2DHWT4qQiHmMBI_gHauV_j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Particle Swarm Optimization Embedded in Variable Neighborhood Search for Task Scheduling in Cloud Computing</title><source>Alma/SFX Local Collection</source><creator>郭力争 王永皎 赵曙光 沈士根 姜长元</creator><creatorcontrib>郭力争 王永皎 赵曙光 沈士根 姜长元</creatorcontrib><description>In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was formulated and a particle swarm optimization (PSO)algorithm embedded in the variable neighborhood search (VNS) to optimize the task scheduling was proposed. The experimental results show that the method is more effective than the PSO in processing cost,transferring cost, and running time. When the task is more complex,the effect is much better. So,the algorithm can resolve the task scheduling in cloud computing and it is feasible,valid,and efficient.</description><identifier>ISSN: 1672-5220</identifier><language>eng</language><publisher>College of Information Sciences and Technology,Donghua University,Shanghai 201620,China%Department of Computer Science and Engineering,Henan University of Urban Construction,Pingdingshan 467633,China%College of Information Sciences and Technology,Donghua University,Shanghai 201620,China</publisher><subject>应用程序 ; 操作系统 ; 计算机 ; 软件开发</subject><ispartof>东华大学学报(英文版), 2013, Vol.30 (2), p.145-152</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86692X/86692X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>郭力争 王永皎 赵曙光 沈士根 姜长元</creatorcontrib><title>Particle Swarm Optimization Embedded in Variable Neighborhood Search for Task Scheduling in Cloud Computing</title><title>东华大学学报(英文版)</title><addtitle>Journal of Donghua University</addtitle><description>In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was formulated and a particle swarm optimization (PSO)algorithm embedded in the variable neighborhood search (VNS) to optimize the task scheduling was proposed. The experimental results show that the method is more effective than the PSO in processing cost,transferring cost, and running time. When the task is more complex,the effect is much better. So,the algorithm can resolve the task scheduling in cloud computing and it is feasible,valid,and efficient.</description><subject>应用程序</subject><subject>操作系统</subject><subject>计算机</subject><subject>软件开发</subject><issn>1672-5220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotjktrwzAQhH1ooSHNf1CPPRgkWQ_rWEz6gNAUnPZqZEm2ldhSKtsk7a-vQjp7WBi-3ZmbZIEYxynFGN4lq3HcwyiGOYFikRw-ZJis6g0oTzIMYHuc7GB_5WS9A-uhNlobDawDXzJYWUfu3di2q33ovNegNDKoDjQ-gJ0cD6BUndFzb117uSl6P2tQ-OE4T9G6T24b2Y9m9b-Xyefzele8ppvty1vxtEkVyiBOGxoHE4yZoYzLWpicZYjAmtCcQZpxxjMihNIm5xQLmiPENFKYEAGRICZbJo_XvyfpGunaau_n4GJipTt9PteVwfCSBBGO7MOVVZ137XdsWR2DHWT4qQiHmMBI_gHauV_j</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>郭力争 王永皎 赵曙光 沈士根 姜长元</creator><general>College of Information Sciences and Technology,Donghua University,Shanghai 201620,China%Department of Computer Science and Engineering,Henan University of Urban Construction,Pingdingshan 467633,China%College of Information Sciences and Technology,Donghua University,Shanghai 201620,China</general><general>Department of Computer Science and Engineering,Henan University of Urban Construction,Pingdingshan 467633,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2013</creationdate><title>Particle Swarm Optimization Embedded in Variable Neighborhood Search for Task Scheduling in Cloud Computing</title><author>郭力争 王永皎 赵曙光 沈士根 姜长元</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1302-f5f5f24226e567ab9e863140b45860537673499cde8752958116d1c24490194e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>应用程序</topic><topic>操作系统</topic><topic>计算机</topic><topic>软件开发</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>郭力争 王永皎 赵曙光 沈士根 姜长元</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>东华大学学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>郭力争 王永皎 赵曙光 沈士根 姜长元</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle Swarm Optimization Embedded in Variable Neighborhood Search for Task Scheduling in Cloud Computing</atitle><jtitle>东华大学学报(英文版)</jtitle><addtitle>Journal of Donghua University</addtitle><date>2013</date><risdate>2013</risdate><volume>30</volume><issue>2</issue><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>1672-5220</issn><abstract>In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was formulated and a particle swarm optimization (PSO)algorithm embedded in the variable neighborhood search (VNS) to optimize the task scheduling was proposed. The experimental results show that the method is more effective than the PSO in processing cost,transferring cost, and running time. When the task is more complex,the effect is much better. So,the algorithm can resolve the task scheduling in cloud computing and it is feasible,valid,and efficient.</abstract><pub>College of Information Sciences and Technology,Donghua University,Shanghai 201620,China%Department of Computer Science and Engineering,Henan University of Urban Construction,Pingdingshan 467633,China%College of Information Sciences and Technology,Donghua University,Shanghai 201620,China</pub><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-5220
ispartof 东华大学学报(英文版), 2013, Vol.30 (2), p.145-152
issn 1672-5220
language eng
recordid cdi_wanfang_journals_dhdxxb_e201302012
source Alma/SFX Local Collection
subjects 应用程序
操作系统
计算机
软件开发
title Particle Swarm Optimization Embedded in Variable Neighborhood Search for Task Scheduling in Cloud Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20Swarm%20Optimization%20Embedded%20in%20Variable%20Neighborhood%20Search%20for%20Task%20Scheduling%20in%20Cloud%20Computing&rft.jtitle=%E4%B8%9C%E5%8D%8E%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=%E9%83%AD%E5%8A%9B%E4%BA%89%20%E7%8E%8B%E6%B0%B8%E7%9A%8E%20%E8%B5%B5%E6%9B%99%E5%85%89%20%E6%B2%88%E5%A3%AB%E6%A0%B9%20%E5%A7%9C%E9%95%BF%E5%85%83&rft.date=2013&rft.volume=30&rft.issue=2&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=1672-5220&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Edhdxxb_e201302012%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=47024001&rft_wanfj_id=dhdxxb_e201302012&rfr_iscdi=true