Particle Swarm Optimization Embedded in Variable Neighborhood Search for Task Scheduling in Cloud Computing

In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:东华大学学报(英文版) 2013, Vol.30 (2), p.145-152
1. Verfasser: 郭力争 王永皎 赵曙光 沈士根 姜长元
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was formulated and a particle swarm optimization (PSO)algorithm embedded in the variable neighborhood search (VNS) to optimize the task scheduling was proposed. The experimental results show that the method is more effective than the PSO in processing cost,transferring cost, and running time. When the task is more complex,the effect is much better. So,the algorithm can resolve the task scheduling in cloud computing and it is feasible,valid,and efficient.
ISSN:1672-5220