A Depth-first Algorithm of Finding All Association Rules Generated by a Frequent Itemset

O1; The classical algorithm of finding association rules generated by a frequent itemset has to generate all nonempty subsets of the frequent itemset as candidate set of consequents. Xiongfei Li aimed at this and proposed an improved algorithm. The algorithm finds all consequents layer by layer, so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:东华大学学报(英文版) 2006-12, Vol.23 (6), p.1-9
Hauptverfasser: WU Kun, JIANG Bao-qing, WEI Qing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:O1; The classical algorithm of finding association rules generated by a frequent itemset has to generate all nonempty subsets of the frequent itemset as candidate set of consequents. Xiongfei Li aimed at this and proposed an improved algorithm. The algorithm finds all consequents layer by layer, so it is breadth-first. In this paper, we propose a new algorithm Generate Rules by using Set-Enumeration Tree (GRSET) which uses the structure of Set-Enumeration Tree and depth-first method to find all consequents of the association rules one by one and get all association rules correspond to the consequents.Experiments show GRSET algorithm to be practicable and efficient.
ISSN:1672-5220