基于Mask-RCNN与SFM的单目视觉长方体三维测量方法

为解决基于运动结构恢复(Structure from motion,SFM)多视角拍摄的局限性,以实现自动化三维测量效果,本文提出了一种可用于长方体三维测量的基于Mask-区域卷积神经网络(Mask-region convolutional neural networks,Mask-RCNN)和SFM的单目视觉测量方法.以箱体三维测量为例,该方法包括测量点提取、转换矩阵计算和三维映射测量三个部分,仅需一次标定获取内部参数,利用深度学习技术实现了单视角自动化三维测量,避免复杂重建的同时降低了视觉测量方法的应用要求.实验结果表明,该方法在棋盘格标志物下获得测量结果的相对标准不确定度在6%以内,在箱...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:测试科学与仪器 2023, Vol.14 (2), p.127-136
Hauptverfasser: 宋乐, 侯宇鹏, 张俊鹏, 吴桐, 齐昊鸣, 商恩浩
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:为解决基于运动结构恢复(Structure from motion,SFM)多视角拍摄的局限性,以实现自动化三维测量效果,本文提出了一种可用于长方体三维测量的基于Mask-区域卷积神经网络(Mask-region convolutional neural networks,Mask-RCNN)和SFM的单目视觉测量方法.以箱体三维测量为例,该方法包括测量点提取、转换矩阵计算和三维映射测量三个部分,仅需一次标定获取内部参数,利用深度学习技术实现了单视角自动化三维测量,避免复杂重建的同时降低了视觉测量方法的应用要求.实验结果表明,该方法在棋盘格标志物下获得测量结果的相对标准不确定度在6%以内,在箱体自带标志物下获得测量结果的相对标准不确定度在8%以内.
ISSN:1674-8042
DOI:10.3969/j.issn.1674-8042.2023.02.001