神经网络与 D-S 证据理论融合的液压系统故障诊断方法
TP181; 针对液压驱动火箭炮随动系统故障类型的多样性以及故障信息不确定性等问题,提出了证据理论与神经网络综合集成的故障诊断方法。为克服单一神经网络自身的缺点,在普通节点处建立2个改进神经网络模型来简化网络结构,分别以铁谱数据和压力、流量、温度特征参数作为输入向量进行初始故障诊断,并将诊断结果作为证据理论的基本概率分配,从而实现了赋值的客观化。然后,利用 D-S 证据理论对2个改进神经网络的初始诊断结果进行融合。实验结果表明:该方法避免了神经网络识别时的误诊,提高了液压驱动的火箭炮随动系统故障诊断的准确性。...
Gespeichert in:
Veröffentlicht in: | 测试科学与仪器 2016, Vol.7 (4), p.368-374 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP181; 针对液压驱动火箭炮随动系统故障类型的多样性以及故障信息不确定性等问题,提出了证据理论与神经网络综合集成的故障诊断方法。为克服单一神经网络自身的缺点,在普通节点处建立2个改进神经网络模型来简化网络结构,分别以铁谱数据和压力、流量、温度特征参数作为输入向量进行初始故障诊断,并将诊断结果作为证据理论的基本概率分配,从而实现了赋值的客观化。然后,利用 D-S 证据理论对2个改进神经网络的初始诊断结果进行融合。实验结果表明:该方法避免了神经网络识别时的误诊,提高了液压驱动的火箭炮随动系统故障诊断的准确性。 |
---|---|
ISSN: | 1674-8042 |
DOI: | 10.3969/j.issn.1674-8042.2016.04.010 |