粉末注射成形中幂律稳态问题的数值计算
对粉末注射成形中幂律流体的稳态问题构造了牛顿迭代公式,进行数值模拟,并利用FEPG3.0软件对绕流问题进行了数值计算,获得该问题的速度场.
Gespeichert in:
Veröffentlicht in: | 长沙大学学报 2003, Vol.17 (2), p.17-20 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 2 |
container_start_page | 17 |
container_title | 长沙大学学报 |
container_volume | 17 |
creator | 彭向阳 刘金朝 |
description | 对粉末注射成形中幂律流体的稳态问题构造了牛顿迭代公式,进行数值模拟,并利用FEPG3.0软件对绕流问题进行了数值计算,获得该问题的速度场. |
doi_str_mv | 10.3969/j.issn.1008-4681.2003.02.005 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_csdxxb200302005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7876199</cqvip_id><wanfj_id>csdxxb200302005</wanfj_id><sourcerecordid>csdxxb200302005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585-8cf23928e71fb3166be217dd24aee3c1785b040d6aedc3d8906cd7d5b81fdf943</originalsourceid><addsrcrecordid>eNo9jztLw1Acxe-gYKn9EILglPi_9yb3MUrxBQWX7iW5j5paUjSIHat0UFxcpCIudiqIodhFQf00JrHfwkjF5Rw4_DiHg9A6BpdKJjc7bpQksYsBhOMxgV0CQF0gLoC_hCr_-QqqJUkUAjCfgeSkgljxcpU_POWzSTYd5pc32cf46_U5e7vIPq-LySwfnM9H6Xx8V9wP89tpNnj_Th-LdLSKlm3QTUztz6uoubPdrO85jYPd_fpWw1G-8B2hLKGSCMOxDSlmLDQEc62JFxhDFebCD8EDzQKjFdVCAlOaaz8U2GorPVpFG4vasyC2QdxudXqnJ3E52FKJ7vfD35tQil-SawtSHfbi9nFUsmGgjmzUNS0uOMNS0h8bDGj7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>粉末注射成形中幂律稳态问题的数值计算</title><source>国家哲学社会科学学术期刊数据库 (National Social Sciences Database)</source><creator>彭向阳 刘金朝</creator><creatorcontrib>彭向阳 刘金朝</creatorcontrib><description>对粉末注射成形中幂律流体的稳态问题构造了牛顿迭代公式,进行数值模拟,并利用FEPG3.0软件对绕流问题进行了数值计算,获得该问题的速度场.</description><identifier>ISSN: 1008-4681</identifier><identifier>DOI: 10.3969/j.issn.1008-4681.2003.02.005</identifier><language>chi</language><publisher>长沙大学数学与信息科学系,长沙,410003</publisher><subject>幂律流体 ; 数值计算 ; 牛顿迭代法 ; 稳态问题 ; 粉末注射成形 ; 速度场</subject><ispartof>长沙大学学报, 2003, Vol.17 (2), p.17-20</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/90254X/90254X.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>彭向阳 刘金朝</creatorcontrib><title>粉末注射成形中幂律稳态问题的数值计算</title><title>长沙大学学报</title><addtitle>Journal of Changsha University</addtitle><description>对粉末注射成形中幂律流体的稳态问题构造了牛顿迭代公式,进行数值模拟,并利用FEPG3.0软件对绕流问题进行了数值计算,获得该问题的速度场.</description><subject>幂律流体</subject><subject>数值计算</subject><subject>牛顿迭代法</subject><subject>稳态问题</subject><subject>粉末注射成形</subject><subject>速度场</subject><issn>1008-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNo9jztLw1Acxe-gYKn9EILglPi_9yb3MUrxBQWX7iW5j5paUjSIHat0UFxcpCIudiqIodhFQf00JrHfwkjF5Rw4_DiHg9A6BpdKJjc7bpQksYsBhOMxgV0CQF0gLoC_hCr_-QqqJUkUAjCfgeSkgljxcpU_POWzSTYd5pc32cf46_U5e7vIPq-LySwfnM9H6Xx8V9wP89tpNnj_Th-LdLSKlm3QTUztz6uoubPdrO85jYPd_fpWw1G-8B2hLKGSCMOxDSlmLDQEc62JFxhDFebCD8EDzQKjFdVCAlOaaz8U2GorPVpFG4vasyC2QdxudXqnJ3E52FKJ7vfD35tQil-SawtSHfbi9nFUsmGgjmzUNS0uOMNS0h8bDGj7</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>彭向阳 刘金朝</creator><general>长沙大学数学与信息科学系,长沙,410003</general><general>中国铁道研究所,北京,100000</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2003</creationdate><title>粉末注射成形中幂律稳态问题的数值计算</title><author>彭向阳 刘金朝</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585-8cf23928e71fb3166be217dd24aee3c1785b040d6aedc3d8906cd7d5b81fdf943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2003</creationdate><topic>幂律流体</topic><topic>数值计算</topic><topic>牛顿迭代法</topic><topic>稳态问题</topic><topic>粉末注射成形</topic><topic>速度场</topic><toplevel>online_resources</toplevel><creatorcontrib>彭向阳 刘金朝</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>长沙大学学报</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>彭向阳 刘金朝</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>粉末注射成形中幂律稳态问题的数值计算</atitle><jtitle>长沙大学学报</jtitle><addtitle>Journal of Changsha University</addtitle><date>2003</date><risdate>2003</risdate><volume>17</volume><issue>2</issue><spage>17</spage><epage>20</epage><pages>17-20</pages><issn>1008-4681</issn><abstract>对粉末注射成形中幂律流体的稳态问题构造了牛顿迭代公式,进行数值模拟,并利用FEPG3.0软件对绕流问题进行了数值计算,获得该问题的速度场.</abstract><pub>长沙大学数学与信息科学系,长沙,410003</pub><doi>10.3969/j.issn.1008-4681.2003.02.005</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1008-4681 |
ispartof | 长沙大学学报, 2003, Vol.17 (2), p.17-20 |
issn | 1008-4681 |
language | chi |
recordid | cdi_wanfang_journals_csdxxb200302005 |
source | 国家哲学社会科学学术期刊数据库 (National Social Sciences Database) |
subjects | 幂律流体 数值计算 牛顿迭代法 稳态问题 粉末注射成形 速度场 |
title | 粉末注射成形中幂律稳态问题的数值计算 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E7%B2%89%E6%9C%AB%E6%B3%A8%E5%B0%84%E6%88%90%E5%BD%A2%E4%B8%AD%E5%B9%82%E5%BE%8B%E7%A8%B3%E6%80%81%E9%97%AE%E9%A2%98%E7%9A%84%E6%95%B0%E5%80%BC%E8%AE%A1%E7%AE%97&rft.jtitle=%E9%95%BF%E6%B2%99%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%BD%AD%E5%90%91%E9%98%B3%20%E5%88%98%E9%87%91%E6%9C%9D&rft.date=2003&rft.volume=17&rft.issue=2&rft.spage=17&rft.epage=20&rft.pages=17-20&rft.issn=1008-4681&rft_id=info:doi/10.3969/j.issn.1008-4681.2003.02.005&rft_dat=%3Cwanfang_jour_chong%3Ecsdxxb200302005%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=7876199&rft_wanfj_id=csdxxb200302005&rfr_iscdi=true |