基于变分模态分解和LSTM的短时交通流预测
U491; 交通流具有非线性、波动性和随机性等特征,为进一步提高短时交通流预测精度,提出了一种基于变分模态分解(VMD)和长短时记忆(LSTM)神经网络的短时交通流预测方法.采用VMD将原始交通流数据分解为k个平稳的固有模态分量(IMF),针对每个模态分量分别输入LSTM模型进行预测,将各项预测值汇总叠加,获得交通流预测结果.利用上海南北高架快速路感应线圈数据进行验证分析,结果表明:采用VMD分解后的预测结果更为精确,相比于BPNN、LSTM、EMD-LSTM、EEMD-LSTM等模型的预测结果,在平均绝对误差(MAE)方面分别优化了35.5%、28.25%、21.1%、13%,具有较高的预测...
Gespeichert in:
Veröffentlicht in: | 重庆理工大学学报 2023, Vol.37 (10), p.169-177 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | U491; 交通流具有非线性、波动性和随机性等特征,为进一步提高短时交通流预测精度,提出了一种基于变分模态分解(VMD)和长短时记忆(LSTM)神经网络的短时交通流预测方法.采用VMD将原始交通流数据分解为k个平稳的固有模态分量(IMF),针对每个模态分量分别输入LSTM模型进行预测,将各项预测值汇总叠加,获得交通流预测结果.利用上海南北高架快速路感应线圈数据进行验证分析,结果表明:采用VMD分解后的预测结果更为精确,相比于BPNN、LSTM、EMD-LSTM、EEMD-LSTM等模型的预测结果,在平均绝对误差(MAE)方面分别优化了35.5%、28.25%、21.1%、13%,具有较高的预测精度. |
---|---|
ISSN: | 1674-8425 |
DOI: | 10.3969/j.issn.1674-8425(z).2023.05.020 |