基于双重扰动与核ELM融合的大学生贫困认定模型研究

TP181; 精准实现大学生贫困认定是实现高校精准扶贫的重要前提,但是因为贫困认定需要提交的材料涉及隐私和数据非客观性原因,当前贫困认定存在部分学生做假和自卑学生不敢申请的不公平现象.针对该问题,以学生一卡通消费数据和个人基本信息等客观数据为基础,构建贫困特征分箱和特征交叉算法,形成一套大学生贫困认定特征参数.随后,为处理贫困认定数据集不平衡性,提出了数据样本和输入属性双重扰动方法,并与核ELM算法融合,构建了大学生贫困认定DP_KELM算法.实验结果表明:构建的特征在随机森林和KELM算法的准确率方面都超过0.82,而双重扰动模式对提高算法的G-mean值有较好作用,DP_KELM算法在G-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:重庆理工大学学报(自然科学版) 2021, Vol.35 (5), p.243-252
Hauptverfasser: 郑建华, 朱蓉, 刘双印, 贺超波
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP181; 精准实现大学生贫困认定是实现高校精准扶贫的重要前提,但是因为贫困认定需要提交的材料涉及隐私和数据非客观性原因,当前贫困认定存在部分学生做假和自卑学生不敢申请的不公平现象.针对该问题,以学生一卡通消费数据和个人基本信息等客观数据为基础,构建贫困特征分箱和特征交叉算法,形成一套大学生贫困认定特征参数.随后,为处理贫困认定数据集不平衡性,提出了数据样本和输入属性双重扰动方法,并与核ELM算法融合,构建了大学生贫困认定DP_KELM算法.实验结果表明:构建的特征在随机森林和KELM算法的准确率方面都超过0.82,而双重扰动模式对提高算法的G-mean值有较好作用,DP_KELM算法在G-mean和AUC上均优于对比的9种算法.DP_KELM算法能够有效识别贫困大学生,为实现校园精准扶贫提供辅助决策工具.
ISSN:1674-8425
DOI:10.3969/j.issn.1674-8425(z).2021.05.031