一种基于粗糙集的特征加权朴素贝叶斯分类器
朴素贝叶斯分类器是一种简单高效的分类算法,但其属性独立性假设影响了分类效果。通过放松朴素贝叶斯假设可以增强朴素贝叶斯的分类效果,但是通常会导致计算代价大幅提高。针对以上问题,提出了一种基于粗糙集的特征加权朴素贝叶斯算法,加权参数直接从训练数据中学习得到,可以看作是计算某个后验概率时,某个特征对于该类别的影响程度。将该分类算法与朴素贝叶斯分类器(na ve bayesian classifier,NB)、贝叶斯网(bayes networks)和NBTree分类器进行实验比较。结果表明:在大多数数据集上,FWNB分类器在较小的计算代价下,具有较高的分类正确率。...
Gespeichert in:
Veröffentlicht in: | 重庆理工大学学报(自然科学版) 2010, Vol.24 (7), p.86-90 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 朴素贝叶斯分类器是一种简单高效的分类算法,但其属性独立性假设影响了分类效果。通过放松朴素贝叶斯假设可以增强朴素贝叶斯的分类效果,但是通常会导致计算代价大幅提高。针对以上问题,提出了一种基于粗糙集的特征加权朴素贝叶斯算法,加权参数直接从训练数据中学习得到,可以看作是计算某个后验概率时,某个特征对于该类别的影响程度。将该分类算法与朴素贝叶斯分类器(na ve bayesian classifier,NB)、贝叶斯网(bayes networks)和NBTree分类器进行实验比较。结果表明:在大多数数据集上,FWNB分类器在较小的计算代价下,具有较高的分类正确率。 |
---|---|
ISSN: | 1674-8425 |
DOI: | 10.3969/j.issn.1674-8425-B.2010.07.016 |