Electrochemical Fabrication of Pd-Ag Alloy Nanowire Arrays in Anodic Alumina Oxide Template

The synthesis of Pd-Ag alloy nanowires in nanopores of porous anodic aluminum oxide (AAO) template by electrochemical deposition technique was reported. Pd-Ag alloy nanowires with 16%-25% Ag content are expected to serve as candidates of useful nanomaterials for the hydrogen sensors. Scanning electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science & technology 2008-11, Vol.24 (6), p.850-856
Hauptverfasser: Yue, Erhong, Yu, Gang, Ouyang, Yuejun, Weng, Baicheng, Si, Weiwei, Ye, Liyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The synthesis of Pd-Ag alloy nanowires in nanopores of porous anodic aluminum oxide (AAO) template by electrochemical deposition technique was reported. Pd-Ag alloy nanowires with 16%-25% Ag content are expected to serve as candidates of useful nanomaterials for the hydrogen sensors. Scanning electron microscopy (SEM) and energy dispersed X-ray spectroscopy (EDX) were employed to characterize the morphologies and compositions of the Pd-Ag nanowires. X-ray diffraction (XRD) was used to characterize the phase properties of the Pd-Ag nanowires. Pd-Ag alloy nanowire arrays with 17.28%-23.76% Ag content have been successfully fabricated by applying potentials ranging from -0.8 to -1.0 V (vs SCE). The sizes of the alloy nanowires are in agreement with the diameter of AAO nanopores. The underpotential deposition of Ag+ on Pd and Au plays an important role in producing an exceptionally high Ag content in the alloy. Alloy compositions can still be controlled by adjusting the ion concentration ratio of Pd^2+ and Ag+ and the electrodeposition processes. XRD shows that nanowires obtained are in the form of alloy of Pd and Ag.
ISSN:1005-0302
1941-1162
DOI:10.3321/j.issn:1005-0302.2008.06.006