Sustainable preparation of graphene-analogue boron nitride by ball-milling for adsorption of organic pollutants

[Display omitted] The method of fabricating low-cost adsorbents with high activity and durability via a convenient and eco-friendly procedure is of great importance to wastewater treatment. Herein, a high-efficient mechanical exfoliation strategy was proposed to facilely prepare few-layered graphene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical engineering 2022-02, Vol.42 (2), p.73-81
Hauptverfasser: Wu, Haofeng, Chao, Yanhong, Jin, Yan, Tao, Duanjian, Li, Xiaowei, Luo, Jing, Xia, Guohua, Zhu, Linhua, Zhu, Wenshuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The method of fabricating low-cost adsorbents with high activity and durability via a convenient and eco-friendly procedure is of great importance to wastewater treatment. Herein, a high-efficient mechanical exfoliation strategy was proposed to facilely prepare few-layered graphene-analogue boron nitride (BN) via a one-step non-organic solvent assisted wet ball mill procedure. Ball-milling treatment increased the specific surface area of BN 3.5-fold by reducing the thickness to ∼3 layers with 45 min. The exfoliated BN exhibited strikingly improved sorption performance to organic contaminants with around 124% and 116% increased removal efficiency respectively for oxytetracycline (OTC) and Rhodamine B (RhB) as compared to the bulk BN. Batches sorption experiments showed that the sorption processes were thermodynamic endothermic, and well fitted to pseudo-second-order kinetic model and Freundlich isotherm equation. The π-π stacking interaction, hydrophobic effect and electrostatic interaction were proposed as the dominated sorption mechanism. In addition, no significant decline in adsorptive removal ability for the sorbent after 5 times recycling. The results indicate that the ball-milling exfoliation is a fast, green, sustainable and promising strategy for synthesis of highly potent BN based two-dimensional layered adsorbents.
ISSN:1004-9541
2210-321X
DOI:10.1016/j.cjche.2021.09.025