Hydrothermal and entropy generation specifications of a hybrid ferronanofluid in microchannel heat sink embedded in CPUs
[Display omitted] The objective of this numerical work is to evaluate the first law and second law performances of a hybrid nanofluid flowing through a liquid-cooled microchannel heatsink. The water-based hybrid nanofluid includes the Fe3O4 and carbon nanotubes (CNTs) nanoparticles. The heatsink inc...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemical engineering 2021-04, Vol.32 (4), p.27-38 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The objective of this numerical work is to evaluate the first law and second law performances of a hybrid nanofluid flowing through a liquid-cooled microchannel heatsink. The water-based hybrid nanofluid includes the Fe3O4 and carbon nanotubes (CNTs) nanoparticles. The heatsink includes a microchannel configuration for the flow field to gain heat from a processor placed on the bottom of the heatsink. The effects of Fe3O4 concentration (φFe3O4), CNT concentration (φCNT) and Reynolds number (Re) on the convective heat transfer coefficient, CPU surface temperature, thermal resistance, pumping power, as well as the rate of entropy generation due to the heat transfer and fluid friction is examined. The results indicated higher values of convective heat transfer coefficient, pumping power, and frictional entropy generation rate for higher values of Re, φFe3O4 and φCNT. By increasing Re, φFe3O4and φCNT, the CPU surface temperature and the thermal resistance decrease, and the temperature distribution at the CPU surface became more uniform. To achieve the maximum performance of the studied heatsink, applying the hybrid nanofluid with low φFe3O4and φCNT was suggested, while the minimum entropy generation was achieved with the application of nanofluid with high φFe3O4and φCNT. |
---|---|
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/j.cjche.2020.08.053 |