CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design

The majority of research on water turbines focuses on design improvement of large-scale hydrokinetic turbines for power generation, which may have delayed the utilization of kinetic energy contained in rivers and canals. The aim of this paper is to improve the efficiency of a two bladed Savonius typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical engineering 2019-04, Vol.27 (4), p.794-801
Hauptverfasser: Thakur, Narendra, Biswas, Agnimitra, Kumar, Yogesh, Basumatary, Mithinga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The majority of research on water turbines focuses on design improvement of large-scale hydrokinetic turbines for power generation, which may have delayed the utilization of kinetic energy contained in rivers and canals. The aim of this paper is to improve the efficiency of a two bladed Savonius type cross-flow hydrokinetic turbine, which can be used as an energy converter to harness free-stream kinetic energy of water. An impinging jet duct design is presented for improving performance of the Savonius turbine in wind application as seen from literature. The performance of the modified turbine is evaluated using CFD software Fluent, and is compared with that of a simple two bladed Savonius water turbine and some of the prominent literature designs of the Savonius turbine. It is shown that the present design exhibits improved performance compared to the selected designs of the Savonius turbine. Further an insight of the improved performance of the modified turbine is also obtained from flow physics study.
ISSN:1004-9541
2210-321X
DOI:10.1016/j.cjche.2018.11.014