顾及数字地图中车道走向的车辆跟踪增强算法
P208; 车辆跟踪技术旨在从连续场景中估计目标车辆的状态,对智能车辆的环境感知、场景理解和目标行为预测起着至关重要的作用.基于激光雷达的感知系统能够提供准确的车辆检测结果,但依据检测结果进行车辆跟踪时,存在车辆朝向估计失准导致跟踪误差大、轨迹预测稳定性差的难题,尤其在目标距离较远、点云较为稀疏的情况下.考虑到大多数时刻车辆行驶方向与车道线方向基本一致,本文提出一种基于数字地图中车道朝向先验信息的车辆跟踪增强方法,将局部车道线的识别结果与OpenStreetMap地图中的车道线信息进行融合,建立道路模型并获取道路朝向的先验约束;在基于扩展卡尔曼滤波的车辆跟踪框架下,利用该约束优化车辆的朝向估计...
Gespeichert in:
Veröffentlicht in: | 测绘学报 2021-11, Vol.50 (11), p.1522-1533 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P208; 车辆跟踪技术旨在从连续场景中估计目标车辆的状态,对智能车辆的环境感知、场景理解和目标行为预测起着至关重要的作用.基于激光雷达的感知系统能够提供准确的车辆检测结果,但依据检测结果进行车辆跟踪时,存在车辆朝向估计失准导致跟踪误差大、轨迹预测稳定性差的难题,尤其在目标距离较远、点云较为稀疏的情况下.考虑到大多数时刻车辆行驶方向与车道线方向基本一致,本文提出一种基于数字地图中车道朝向先验信息的车辆跟踪增强方法,将局部车道线的识别结果与OpenStreetMap地图中的车道线信息进行融合,建立道路模型并获取道路朝向的先验约束;在基于扩展卡尔曼滤波的车辆跟踪框架下,利用该约束优化车辆的朝向估计,进而提升车辆跟踪的精度与轨迹预测稳定性.在KITTI数据集上的定性与定量试验证明,本文所提出的方法在多目标跟踪指标上提升至少0.33%,平均位移误差降低了0.014 m以上,同时,对于60 m外车辆目标的跟踪误差降低了0.08 m以上. |
---|---|
ISSN: | 1001-1595 |
DOI: | 10.11947/j.AGCS.2021.20210258 |